首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms regulating the release of serotonin into the portal circulation as well as into the gastric lumen were studied in the isolated vascularly and luminally perfused rat stomach. Immunohistochemical study of the rat stomach showed that serotonin-containing enterochromaffin (EC) cells were densely packed in the antral mucosa, sparsely scattered in the corpus, and not found in the fundus. Such morphological findings suggest that serotonin detected in this study may have originated from antral EC cells. Luminal acidification stimulated the vascular release of serotonin but did not affect the luminal release of serotonin. The basal release of serotonin into the vasculature was 10 times higher than that into the gastric lumen at intragastric pH 2. The vascular release of serotonin is regulated by stimulation from cholinergic nicotinic mechanisms, whereas inhibitory neurotransmitters such as vasoactive intestinal peptide and NO are probably not involved. Somatostatin and peptide YY originating from endocrine cells may exert direct inhibitory effects, possibly via somatostatin and peptide YY receptors on the EC cells, and a cholinergic muscarinic mechanism may exert indirect effects on the vascular release of serotonin via the muscarinic receptor on the endocrine cells.  相似文献   

2.
The involvement of cyclic AMP in mediating regulatory peptide-controlled prolactin release from GH3 pituitary tumour cells was investigated. Cholera toxin and forskolin elicited concentration-dependent increases in both GH3 cell cyclic AMP content and prolactin release. The maximum rise in prolactin release with these agents was 2-fold over basal. 8-Bromo-cyclic AMP produced a similar stimulation of prolactin release. The phosphodiesterase inhibitor isobutylmethylxanthine also produced an increase in prolactin release and GH3 cell cyclic AMP content. However, the magnitude of the stimulated prolactin release exceeded that obtained with any other agent. Thyrotropin-releasing hormone (thyroliberin) and vasoactive intestinal polypeptide produced a concentration-dependent rise in both cell cyclic AMP content and prolactin release. However, only vasoactive intestinal polypeptide elicited an increase in cell cyclic AMP content at concentrations relevant to the stimulation of prolactin release. Vasoactive intestinal polypeptide and thyrotropin-releasing hormone, when used in combination, were additive with respect to prolactin release. Vasoactive intestinal polypeptide and forskolin, at concentrations that were maximal upon prolactin release, were, when used in combination, synergistic upon GH3 cell cyclic AMP content but were not additive upon prolactin release. In conclusion the evidence supports a role for cyclic AMP in the mediation of vasoactive intestinal polypeptide- but not thyrotropin-releasing hormone-stimulated prolactin release from GH3 cells. A quantitative analysis indicates that a 50-100% rise in cyclic AMP suffices to stimulate cyclic AMP-dependent prolactin release fully.  相似文献   

3.
S I Said  J C Porter 《Life sciences》1979,24(3):227-230
Immunoreactive vasoactive intestinal polypeptide (VIP) was present in portal hypophyseal blood of 24 male rats in concentrations (mean, 995 pg per ml) that were approximately 19 times as high as those in systemic arterial blood (mean, 52 pg per ml). The results demonstrate release of VIP from the hypothalamic-neurohypophyseal complex into the portal circulation, and establish a mechanism for direct influence of the peptide on pituitary function.  相似文献   

4.
The impact of exposure of the intestinal mucosa to acid and hyperosmolal solutions on the release of the inhibitory gut peptides somatostatin (SOM), neurotensin (NT) and vasoactive intestinal peptide (VIP) was studied in conscious rats during pentagastrin-stimulated gastric acid secretion. The animals were equipped with a chronic gastric fistula to measure acid secretion and a jejunal Thiry-Vella loop for intestinal challenge with saline, hydrochloric acid (HCl, 200 mmol L(-1)) or hyperosmolal polyethylene glycol (PEG, 1200 mOsm kg(-1)). Gut peptide concentrations were measured in intestinal perfusates, and in plasma samples collected during stimulated acid secretion, and at the end of experiments with luminal challenge of the loops. After pentagastrin-stimulation acid secretion was dose-dependently inhibited by intravenous administration of the gastrin receptor antagonist gastrazole, as well as ranitidine and esomeprazole by maximally 73+/-10%; 95+/-3%; 90+/-10%, respectively. Acid perfusion of the Thiry-Vella loop caused a prominent release of SOM both to the lumen (from 7.2+/-5.0 to 1279+/-580 pmol L(-1)) and to the circulation (from 18+/-5.2 to 51+/-9.0 pmol L(-1)) simultaneously with an inhibition of gastric acid secretion. The release of NT and VIP was not affected to the same extent. PEG perfusion of the loop caused a release of SOM as well as NT and VIP, but less. Simultaneously acid secretion was slightly decreased. In conclusion, intestinal perfusion with acid or hyperosmolal solutions mainly releases SOM, which seems to exert a major inhibitory action in the gut, as shown by inhibition of acid secretion. The other peptides NT and VIP also participate in this action but to a much lesser degree. The operative pathways of these gut peptides hence involve both endocrine (SOM) and paracrine actions (SOM, NT, VIP) in order to exert inhibitory functions on the stomach. The inhibitory action of gastrazole, was in a similar range as that of SOM implying that physiological acid-induced inhibition of gastric acid may primarily be exerted through inhibition of gastrin endocrine secretion.  相似文献   

5.
By immunohistochemistry galanin-like immunoreactivity and vasoactive intestinal polypeptide (VIP)-like immunoreactivity were found in nerve cell bodies mostly in the submucous plexus and in nerve fibres in the mucosa, submucosa and muscularis including the myenteric plexus of the porcine ileum and were found to co-exist in most of these structures. Using isolated, perfused porcine ileum we studied the release of galanin and VIP in response to electrical stimulation of the mixed periarterial nerves or to intraarterial infusions of different neuroactive agents. Nerve stimulation (4-10 Hz) inhibited the basal release of galanin and VIP from the ileum (to 69 +/- 6 and 62 +/- 6% of basal release). After infusion of the alpha-adrenergic blocker, phentolamine, (10(-6) M) electrical stimulation increased the release of both galanin and VIP (to 140 +/- 12 and 133 +/- 13% of basal output). This increase was abolished by atropine (10(-6) M) and by hexamethonium (3.10(-5) M). Infusion of norepinephrine (10(-6) M) inhibited, whereas acetylcholine (10(-6) M) stimulated the release of both peptides. The effect of the latter was abolished by atropine. The inhibitory effect of nerve stimulation was not influenced by atropine. Our results suggest that the galanin- and VIP-producing intrinsic neurons receive inhibitory signals by noradrenergic nerve fibers and stimulatory signals mediated by cholinergic nerves, possibly via a cholinergic interneuron.  相似文献   

6.
VIP and noncholinergic vasodilatation in rabbit submandibular gland   总被引:1,自引:0,他引:1  
The effect of parasympathetic nerve activation on rabbit submandibular gland (SMG) blood flow and saliva secretion were studied before and after systemic administration of atropine or hexamethonium. The parasympathetic fibers were stimulated electrically (2 and 15 Hz, 10 V, 1 msec) at the plexus around the submandibular salivary duct or at the chorda lingual nerve. In untreated animals, stimulation of parasympathetic fibers caused a frequency-dependent increase of salivary secretion and blood flow in the SMG. Atropine treatment completely abolished saliva secretion at 2 Hz and 15 Hz and the increase in SMG blood flow during stimulation at 2 Hz. Although atropine significantly reduced the vasodilatory response at 15 Hz, the highest blood flow measured under such circumstances was still about 2.5 times the prestimulation value. After hexamethonium administration no blood flow increase or saliva secretion was seen upon chorda lingual stimulation. The concentration of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the venous effluent of the SMG increased during nerve stimulation. Atropine significantly reduced, and hexamethonium abolished this VIP-output elicited by parasympathetic nerve stimulation. Local infusion of VIP, peptide histidine isoleucine (PHI) and substance P all caused atropine-resistant vasodilation but no salivation. The present data suggest that VIP and possibly PHI play a role in the atropine-resistant vasodilatation in rabbit submandibular gland elicited by parasympathetic nerve stimulation. The contribution of sensory mediators such as substance P released by stimulation of afferent nerves in the chorda lingual nerve to the salivary and vasodilatory responses seems to be of minor importance in the rabbit submandibular gland.  相似文献   

7.
The effect of prostaglandin D2 (PGD2) on vasoactive intestinal polypeptide (VIP) release from the hypothalamus was examined by determining plasma VIP levels in rat hypophysial portal blood. Intraventricular injection of PGD2 (5 micrograms/rat) caused a 3-fold increase in the concentration of plasma VIP in hypophysial portal blood in anesthetized rats. A PGD2 metabolite, 13,14-dihydro-15-keto PGD2, did not affect VIP levels in portal blood. The flow rate of hypophysial portal blood was not changed after the injection of PGD2. The intraventricular injection of PGD2, but not PGD2 metabolite, resulted in an increase in peripheral plasma prolactin (PRL) levels in the rat. These findings suggest that PGD2 plays a stimulatory role in regulating VIP release from the hypothalamus into hypophysial portal blood and causes PRL secretion from the pituitary in rats.  相似文献   

8.
A coarse network of nerve fibres displaying immunoreactivity for vasoactive intestinal polypeptide (VIP) was found in the wall of the hepatic portal vein of the rabbit. Electrical field stimulation of the rabbit portal vein in vitro, in the presence of adrenergic and cholinergic blockade, caused a marked relaxation of the vessel and a release of VIP into the perfusate. Addition of VIP to the tissue bath elicited a concentration-dependent inhibition of the mechanical activity of the portal vein. The results suggest that VIP containing neurones might participate in the non-cholinergic, non-adrenergic vasodilatation of the portal vein in the rabbit.  相似文献   

9.
Glucagon-like peptide (GLP)-1 is secreted rapidly from the intestine postprandially. We therefore investigated its possible neural regulation. With the use of isolated perfused porcine ileum, GLP-1 secretion was measured in response to electrical stimulation of the mixed, perivascular nerve supply and infusions of neuroactive agents alone and in combination with different blocking agents. Electrical nerve stimulation inhibited GLP-1 secretion, an effect abolished by phentolamine. Norepinephrine inhibited secretion, and phentolamine abolished this effect. GLP-1 secretion was stimulated by isoproterenol (abolished by propranolol). Acetylcholine stimulated GLP-1 secretion, and atropine blocked this effect. Dimethylphenylpiperazine stimulated GLP-1 secretion. In chloralose-anesthetized pigs, however, electrical stimulation of the vagal trunks at the level of the diaphragm had no effect on GLP-1 or GLP-2 and weak effects on glucose-dependent insulinotropic peptide and somatostatin secretion, although this elicited a marked atropine-resistant release of the neuropeptide vasoactive intestinal polypeptide to the portal circulation. Thus GLP-1 secretion is inhibited by the sympathetic nerves to the gut and may be stimulated by intrinsic cholinergic nerves, whereas the extrinsic vagal supply has no effect.  相似文献   

10.
 Since definitive morphological studies showing the luminal release of serotonin have not been reported, we used a perfused system which allows physiological monitoring and biochemical as well as morphological evidence indicating release of serotonin from enterochromaffin cells. Isolated vascularly and luminally perfused rat duodenums exposed to 5–35 cmH2O of luminal pressure were measured for release of serotonin into the blood vessels and intestinal lumen. Immediately after raising the luminal pressure, the duodenum was fixed for immunoelectron microscopic localization of serotonin. Peristaltic contraction and serotonin content of the perfusates were continuously measured. The luminal release of serotonin increased with elevated intraluminal pressure, but the vascular release of serotonin was not altered. Tetrodotoxin had no effect on the pressure-stimulated luminal serotonin release. Enterochromaffin cells in control animals without increased luminal pressure contained immunogold-labeled secretory granules in the apical and basal cytoplasm. After intraluminal pressure increased, many apical secretory granules were no longer dense and immunogold particles were localized over the cytoplasmic matrix and microvilli. These findings indicate that luminal serotonin release is increased after raising the intraluminal pressure and serotonin, normally stored in the secretory granules of enterochromaffin cells, appears to be released into the cytoplasmic matrix and then diffuses or is transported into the intestinal lumen. Accepted: 15 January 1997  相似文献   

11.
Summary Nerve fibres displaying immunoreactivity for vasoactive intestinal polypeptide (VIP) were found in the wall of the portal vein in cats, guinea pigs, rats and mice. In whole-mount preparations a sparse network of VIP fibres was seen in the vessel wall. Electrical field stimulation of the rat portal vein in vitro caused a significant release of VIP. The results suggest that VIP ergic nerve fibres play a role in the regulation of portal blood flow.  相似文献   

12.
When either substance P or vasoactive intestinal peptide was injected into an acutely decentralized intrathoracic sympathetic ganglion, short-lasting augmentation of cardiac chronotropism and inotropism was induced. These augmentations were induced before the fall in systemic arterial pressure occurred which was a consequence of these peptides leaking into the systemic circulation in enough quantity to alter peripheral vascular resistance directly. When similar volumes of normal saline were injected into an intrathoracic ganglion, no significant cardiac changes were induced. When substance P or vasoactive intestinal peptide was administered into an intrathoracic ganglion, similar cardiac augmentations were induced either before or after the intravenous administration of hexamethonium. In contrast, when these peptides were injected into an intrathoracic ganglion in which the beta-adrenergic blocking agent timolol (0.1 mg/0.1 ml of normal saline) had been administered no cardiac augmentation occurred. These data imply that in the presence of beta-adrenergic blockade intraganglionic administration of substance P or vasoactive intestinal peptide does not modify enough intrathoracic neurons to alter cardiac chronotropism and inotropism detectably. When neuropeptide Y was injected into an intrathoracic ganglion, no cardiac changes occurred. However, when cardiac augmentations were induced by sympathetic preganglionic axon stimulation these were enhanced following the intraganglionic administration of neuropeptide Y. As this effect occurred after timolol was administered into the ipsilateral ganglia, but not after intravenous administration of hexamethonium, it is proposed that the effects of neuropeptide Y are dependent upon functioning intrathoracic ganglionic nicotinic cholinergic synaptic mechanisms. Intravenous administration of either morphine or [D-ala2,D-leu5]enkephalin acetate did not alter the capacity of the preganglionic sympathetic axons to augment the heart when stimulated. Following the intravenous administration of naloxone, the positive inotropic cardiac responses induced by efferent preganglionic sympathetic axonal stimulation were enhanced minimally in control states and significantly following hexamethonium administration. Thus, it appears that enkephalins are involved in the modulation of intrathoracic ganglion neurons regulating the heart, perhaps via modification of beta-adrenergic receptors. Taken together these data indicate that substance P, vasoactive intestinal peptide, neuropeptide Y, or enkephalins modify intrathoracic ganglionic neurons which are involved in efferent sympathetic cardiac regulation.  相似文献   

13.
T Matsumoto  T Kanno 《Peptides》1984,5(2):285-289
In the anaesthetized guinea pig, the secretory responses (pancreatic juice flow and protein output) induced by electrical stimulation of the vagus nerve were not blocked by atropine but by hexamethonium. Excitation of the left vagus nerve induced by electrical stimulation significantly potentiated the C-terminal octapeptide of cholecystokinin (CCK-OP)-induced secretory responses. In the isolated perfused pancreas of guinea pig, the secretory responses induced by CCK-OP at concentrations in the physiological range were markedly potentiated by simultaneous stimulation with vasoactive intestinal peptide (VIP). However, the secretory responses induced by CCK-OP at higher concentrations were not potentiated but inhibited by simultaneous stimulation of VIP. The secretory responses induced by carbachol (CCh) at any concentrations were not potentiated but inhibited by simultaneous stimulation of VIP. These results support the view that VIP released from the nerve endings can potentiate the hormonal action of CCK-OP.  相似文献   

14.
The isolated stomach of rats was vascularly perfused to measure the secretion of gastrin, somatostatin (SLI) and bombesin-like immunoreactivity (BLI). The gastric lumen was perfused with saline pH 7 or pH 2, and electrical vagal stimulation was performed with 1 ms, 10 V and 2, 5 or 10 Hz, respectively. Atropine was added in concentrations of 10−9 or 10−7 M to evaluate the role of cholinergic mechanisms. In control experiments, vagal stimulation during luminal pH 2 elicited a significant increase of BLI secretion only at 10 Hz but not at 2 and 5 Hz. Somatostatin release was inhibited independent of the stimulation frequency employed. Gastrin secretion at 2 Hz was twice the secretion rates observed at 5 and 10 Hz, respectively. At luminal pH 7 BLI rose significantly at 5 and 10 Hz. SLI secrtion was decreased by all frequencies. Gastrin secretion at 2 and 5 Hz was twice as high as during stimulation with 10 Hz. Atropine at doses of 10−9, 10−8, 10−7 and 10−6 M had no effect on basal secretion of BLI, SLI and gastrin. At luminal pH 2, atropine increased dose-dependently the BLI response at 2 and 5 but not at 10 Hz. The decrease of SLI during 2 and 5 Hz but not 10 Hz was abolished by atropine 10−9 M. SLI was reversed to stimulation during atropine 10−7 M at all frequencies. The rise of gastrin at 2 Hz was reduced by 50%. At luminal pH 7, atropine had comparable effects with a few differences: the BLI response at 10 Hz was augmented and the gastrin response to 2 and 5 Hz was reduced. In conclusion the present data demonstrate a frequency and pH-dependent stimulation of BLI and gastrin release. The stimulation of BLI is predominantly due to atropine-insensitive mechanisms while muscarinic cholinergic mechanisms exert an inhibitory effect on BLI release during lower stimulation frequencies (2 and 5 Hz) independent of the intragastric pH and also during higher frequencies at neutral pH. Both, atropine sensitive and insensitive mechanisms are activated frequency dependent. The atropine-sensitive cholinergic mechanisms but not the noncholinergic mechanisms involved in regulation of G-cell function are pH and frequency dependent. Somatostatin is regulated largely independent of stimulation frequency and pH by at least two pathways involving cholinergic mechanisms of different sensitivity to atropine. These data suggest a highly differentiated regulation of BLI, gastrin and SLI secretion and the interaction between these systems awaits further elucidation.  相似文献   

15.
To study the possible involvement of hypothalamic vasoactive intestinal polypeptide (VIP) in regulating the secretion of prolactin (PRL), the effect of anti-VIP rabbit serum on serotonin (5-HT)-induced PRL release was examined in urethane-anesthetized male rats. Anti-VIP serum (AVS) or normal rabbit serum (NRS) was infused into a single hypophysial portal vessel of the rat for 40 min at a rate of 2 microliters/min with the aid of a fine glass cannula and 5-HT was injected into a lateral ventricle 10 min after the start of the infusion. Intraventricular injection of 5-HT (10 micrograms/rat) caused an increase in plasma PRL levels in control animals infused with NRS and 5-HT-induced PRL release was blunted in animals infused with AVS (mean +/- SE peak plasma PRL: 118.9 +/- 19.8 ng/ml vs 54.7 +/- 16.2 ng/ml, p less than 0.05). These findings suggest that the secretion of PRL induced by 5-HT is mediated, at least in part, by hypothalamic VIP release into the hypophysial portal blood in the rat.  相似文献   

16.
Cyclic AMP accumulation in rat superior cervical ganglia during synaptic activity occurs by a noncholinergic, nonadrenergic process. Both preganglionic nerve stimulation and 4-aminopyridine increase ganglion cyclic AMP levels in the presence of atropine or phentolamine. Of the polypeptides tested as putative transmitters, vasoactive intestinal polypeptide (10(-6) M) causes ganglion cyclic AMP accumulation comparable to that produced by preganglionic nerve stimulation.  相似文献   

17.
Cholinergic role on release and action of motilin   总被引:1,自引:0,他引:1  
K Y Lee  H J Park  T M Chang  W Y Chey 《Peptides》1983,4(3):375-380
In conscious dogs with gastric fistula and platinum electrodes on the antrum, duodenum and jejunum, IV atropine 100 micrograms/kg/hr and hexamethonium 10 mg/kg/hr, blocked cyclic increases in fasting plasma motilin concentration (PMC) and spontaneous migrating myoelectric complexes (MMCs) of both antrum and duodenum. The two drugs also blocked occurrence of premature MMCs produced by synthetic porcine motilin. In anesthetized dogs, electrical stimulation of cervical vagi with stimulation parameters: 9 V, 10 c/s, 5 msec, caused a significant increase in both portal and femoral venous PMC which was blocked by atropine. Fractionations of vagus nerve extracts by gel filtration using Sephadex G-50 superfine column revealed most of motilin-like immunoreactivity (MLI) with the same mobility as pure porcine motilin. Studies suggest that cholinergic influence plays a significant role on release of motilin.  相似文献   

18.
The purpose of this work was to determine the mechanism of the antisecretory effect of peptide YY in the rat colon and whether this effect is physiological. In this prospect, doses of exogenous peptide YY producing physiological and supraphysiological plasma levels were intravenously infused in rats provided with colonic and jejunal ligated loops in vivo, under secretory stimulation by vasoactive intestinal peptide. Peptide YY decreased the secretory effect of VIP in a dose-related fashion. The effect of peptide YY was blocked or strongly decreased by tetrodotoxin, hexamethonium, idazoxan, haloperidol, and the sigma antagonist BMY 14, 802 in both the colon and jejunum. We conclude that peptide YY decreases water and electrolyte secretion in the colonic mucosa by a complex neural mechanism involving at least two neurons connected through a nicotinic synapse, alpha-2 adrenoceptors and sigma receptors, and that this effect can occur with physiological doses of peptide YY.  相似文献   

19.
Cholera toxin (CT) may induce uncontrolled firing in recurrent networks of secretomotor neurons in the submucous plexus. This hypothesis was tested in chloralose-anesthetized rats in vivo. The secretory reflex response to graded intestinal distension was measured with or without prior exposure to luminal CT. The transmural potential difference (PD) was used as a marker for electrogenic chloride secretion. In controls, distension increased PD, and this response was reduced by the neural blocker tetrodotoxin given serosally and the vasoactive intestinal peptide (VIP) receptor antagonist [4Cl-d-Phe(6),Leu(17)]VIP (2 mug.min(-1).kg(-1) iv) but unaffected by the serotonin 5-HT(3) receptor antagonist granisetron, by the nicotinic receptor antagonist hexamethonium, by the muscarinic receptor antagonist atropine, or by the cyclooxygenase inhibitor indomethacin. Basal PD increased significantly with time in CT-exposed segments, an effect blocked by granisetron, by indomethacin, and by [4Cl-d-Phe(6),Leu(17)]VIP but not by hexamethonium or atropine. In contrast, once the increased basal PD produced by CT was established, [4Cl-d-Phe(6),Leu(17)]VIP and indomethacin had no significant effect, whereas granisetron and hexamethonium markedly depressed basal PD. CT significantly reduced the increase in PD produced by distension, an effect reversed by granisetron, indomethacin, and atropine. CT also activated a specific motility response to distension, repeated cluster contractions, but only in animals pretreated with granisetron, indomethacin, or atropine. These data are compatible with the hypothesis that CT induces uncontrolled activity in submucous secretory networks. Development of this state depends on 5-HT(3) receptors, VIP receptors, and prostaglandin synthesis, whereas its maintenance depends on 5-HT(3) and nicotinic receptors but not VIP receptors. The motility effects of CT (probably reflecting myenteric activity) are partially suppressed via a mechanism involving 5-HT(3) and muscarinic receptors and prostaglandin synthesis.  相似文献   

20.
Intraperitoneal injection of choline (40, 80 or 120 mg/kg) produced a dose-dependent increase in serum glucose and choline levels in rats. The increases in serum glucose and choline were associated with an increase of serum insulin as well as plasma levels of epinephrine and norepinephrine. The increases in serum glucose and plasma catecholamine concentrations induced by choline (120 mg/kg) were blocked by pretreatment with the ganglionic nicotinic receptor antagonist hexamethonium (15 mg/kg), but were not affected by pretreatment with atropine (5 mg/kg). The choline-induced rise in serum insulin was blocked by pretreatment with atropine and with hexamethonium each. The increase in serum glucose evoked by choline (120 mg/kg) was blocked by alpha-adrenoceptor blockade and bilateral adrenalectomy each. Blockade of beta-adrenoceptor by propranolol or chemical sympathectomy by 6-hydroxydopamine failed to alter the hyperglycemic response to choline. These results show that choline, a precursor of the neurotransmitter acetylcholine, increases serum glucose and insulin levels. The effect of choline on serum insulin is mediated by both muscarinic and nicotinic acetylcholine receptors, whereas the effect of choline on serum glucose is mediated solely by nicotinic receptors. The stimulation of adrenal medullary catecholamine release and subsequent activation of alpha-adrenoceptors apparently mediates the hyperglycemic effect of choline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号