首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
B Campbell  E Bucci  R F Steiner 《Biochemistry》1985,24(16):4392-4399
Band 3 was labeled with N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate either exofacially in the intact washed erythrocytes or endofacially by treating inside-out vesicles. Exo labeling resulted in the labeling of several other proteins, besides band 3, which could not be removed from the membrane. Therefore, the exo-labeled band 3 was extracted and purified by chromatography on DEAE-cellulose in Triton X-100. The endo labeling also resulted in the labeling of several other proteins. In this case, washing with NaOH removed all labeled material except band 3 from the vesicles. The lifetime of bound N-[(acetylamino)ethyl]-5-naphthylamine-1-sulfonate was heterogeneous, suggesting the positioning of the label in different environments either because different sites were labeled or because of positional freedom of the label at the same point of attachment. The main fraction of emission intensity had a lifetime near 20 ns, as expected for a hydrophobic environment. The rest showed a lifetime of about 3 ns in the exo-labeled band 3 and 9 ns in the endo-labeled band 3. Both lifetimes appeared to be independent of temperature between 5 and 25 degrees C, suggesting shielding of the probe from the solvent. Quenching phenomena must be responsible for both the 3- and 9-ns lifetimes, not due to residual heme, as proven by the persistence of such quenching in the Triton X-100 extracted protein. The correlation times indicated the presence of a short component, between 2 and 4 ns in the different systems, probably due to the presence of a flexible portion in the structure of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Transferrin-membrane protein complexes were solubilized either with 0.4% sodium dodecyl sulfate (SDS), 1% Triton X-100 or 0.5% sulfobetaine 3-14 from the plasma membranes of rabbit reticulocytes previously labeled with 125I and then incubated with 131-labeled transferrin. When the solubilized membranes were analyzed by gel filtration fractionation, marked variation in the preservation of transferrin-transferrin receptor interaction was noted between the three detergents. After SDS solubilization, more than 80% of the 131I-labeled transferrin remained associated with membrane proteins with apparent molecular weight of the transferrin-receptor complexes of 1400 000 and 240 000. In contrast, after Triton X-100 solubilization only 40% of the transferrin was still complexed to membrane proteins with an apparent molecular weight of the complex of 450 000. Dissociation of transferrin from its receptor was most marked following sulfobetaine solubilization, with less than 30% of the transferrin still complexed. Following gel filtration 131I-labeled transferrin-125I-labeled membrane protein complexes were immunoprecipitated with goat specific anti-rabbit transferrin antibodies. The immunoprecipitates were analyzed under stringent dissociating conditions by two SDS-polyacrylamide gel electrophoretic techniques. In a linear 5-25% polyacrylamide gradient the 125I-labeled receptor obtained after membrane solubilization with all three detergents had an apparent molecular weight of 80 000. In contrast, in a different system using 10% polyacrylamide gel two 125I-labeled receptor components were detected wih apparent molecular weights of 90 000 and 80 000. These results demonstrate that estimates of the molecular weight of the transferrin receptor depended on the conditions of electrophoresis and suggest that the transferrin receptor is partially modified, perhaps by glycosylation.  相似文献   

3.
125I-labeled nonsuppressible insulinlike activity—soluble in acid/ethanol (NSILA-S) binds to cultured chicken embryo fibroblasts and to an extract obtained by treating the fibroblasts with Triton X-100. Binding to intact cells and to the cell extract is timetemperature, and pH-dependent and shows saturation kinetics. The apparent intrinsic association constant for binding of NSILA-S to intact cells is 109 M?1, the number of binding sites per cell approximately 6000. Cold NSILA-S preparations of different purity displace bound 125I-labeled NSILA-S according to their biological potency. Moreover, cold NSILA-S displaces bound 125I-labeled NSILA-S in concentrations in which it also stimulates thymidine incorporation into fibroblast DNA. Insulin displaces bound 125I-labeled NSILA-S only at concentrations above 1 mU/ml. Glucagon, ACTH, human growth hormone and inactivated NSILA-S are ineffective. The displacement curves obtained with human serum are similar to those obtained in the presence of cold NSILA-S.  相似文献   

4.
The plasma membrane of nucleated erythrocytes contains a microtubular marginal band which appears to be associated with the plasma membrane skeleton. In this report, we identify two families of cytoskeletal proteins which may be involved in such an association. These proteins, of molecular mass 78 kDa and 48 kDa on SDS-PAGE, are shown to bind tubulin based on a 125I-labeled tubulin binding assay. Solubilization of isolated chicken erythrocyte plasma membranes in Triton X-100 shows that these proteins centrifuge with the pellet, indicating that they are bound to the membrane skeleton. Finally, immunofluorescence studies using antisera raised against the 78 kDa and 48 kDa proteins show that they colocalize with the marginal band in intact cells. Colocalization of cytoskeletal tubulin-binding proteins with the marginal band favors a hypothesis suggesting that the 78 kDa and 48 kDa proteins are involved in the association of the two molecular superstructures.  相似文献   

5.
Endocytosis of GPI-linked membrane folate receptor-alpha   总被引:5,自引:0,他引:5       下载免费PDF全文
GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36- 38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100- resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae.  相似文献   

6.
The isolated brush border membrane of Hymenolepis diminuta incorporates radiolabeled glucose when incubated in the presence of uridine diphospho(UDP)-D-(6-3H)glucose. The pH optimum for incorporation was 7.0 to 7.2 regardless of the buffer used. Transferase activity was maximal in 200 mM Tris buffer; 100 mM phosphate buffer inhibited significantly the incorporation of radiolabeled glucose, whereas 50 mM Tris-maleate and 100 mM PIPES resulted in moderate inhibition of activity. Incorporation of labeled glucose was not inhibited by low concentrations (0.01%) of Triton X-100, but activity was inhibited 50% by 0.25% Triton X-100. Addition of divalent cations to the brush border membrane preparation did not activate transferase activity, but addition of chelating agents (i.e., EDTA or EGTA) inhibited transferase activity nearly 90%. Incorporation of labeled glucose was inhibited by UDP, guanosine diphosphate (GDP), UDP- and GDP-activated monosaccharides, and monosaccharides, indicating that the transferase activity lacked substrate specificity.  相似文献   

7.
Casein kinase and histone kinase(s) are solubilized from human erythrocyte membranes by buffered ionic solutions (0.1 mM EDTA and subsequent 0.8 M NaCl, pH 8) containing 0.2% Triton X-100. Casein kinase is separated from histone kinase(s) by submitting the crude extracts directly to chromatography on a phosphocellulose column, eluted with a continuous linear gradient of potassium phosphate buffer, pH 7.0, containing 0.2% Triton X-100. Under these conditions, the membrane-bound casein kinase activity is almost completely recovered into a quite stable preparation, free of histone kinase activity. In contrast, it undergoes a dramatic loss of activity when the extraction and the subsequent phosphocellulose chromatography are carried out with buffers which do not contain Triton X-100. Isolated spectrin, the most abundant membrane protein, is phosphorylated, in the presence of [gamma-32P]ATP, only by casein kinase while histone kinase is ineffective. Only the smaller subunit (band II) of isolated spectrin (and not the larger one (band I) is involved in such a phosphorylation process, as in the endogenous phosphorylation occurring in intact erythrocytes.  相似文献   

8.
Pharmacological doses of 17 alpha-ethinyl estradiol induce a low density lipoprotein (LDL) receptor in the liver of male rats. Our aim was to solubilize this receptor. Isolated liver membranes (8,000-100,000 g fraction) from male rats treated with 17 alpha-ethinyl estradiol and from control rats were solubilized in 1% (w/v) Triton X-100. Using Amberlite XAD-2, more than 90% of the detergent was then removed. Liposomes were prepared by precipitating the solubilized proteins with acetone in the presence of phosphatidylcholine. The receptor activity of these liposomes was assayed using human 125I-labeled LDL. Filtration was used to separate bound from free 125I-labeled LDL. The assay was optimized; 0.25 mM CaCl2, 25 mM NaCl, pH 8.0, were chosen as the standard conditions. Binding of 125I-labeled LDL was dependent on Ca2+. Liposomes containing solubilized membrane proteins from treated rats displayed Ca2+-dependent binding which was 11 times higher than for control rats. The specific binding of 125I-labeled LDL was saturable with a Kd = 18 micrograms/ml. 125I-Labeled LDL was displaced by unlabeled lipoproteins containing apolipoproteins B and E and by dimyristoylphosphatidylcholine liposomes containing purified apolipoprotein E, but not by HDL3. The binding was abolished by pronase and was inhibited by suramin. Ligand blotting with 125I-labeled LDL revealed one band of protein with an apparent molecular weight of 133,000 daltons. These properties are characteristic of the low density lipoprotein receptor.  相似文献   

9.
The glucose transporter from human erythrocytes is a heterogeneously glycosylated protein that runs as a very broad band of average apparent Mr 55 000 upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. When the purified preparation of transporter, solubilized in Triton X-100, was treated with endoglycosidase F, much of it ran as a sharp band of Mr 46 000 upon electrophoresis. Moreover, endoglycosidase F released 80% of the radioactivity in a preparation of the transporter labeled in its oligosaccharides with galactose oxidase and tritiated borohydride, and almost none of the remaining radioactivity was located in the Mr 46 000 band. These results suggest that endoglycosidase F can release virtually all of the carbohydrate linked to the transporter polypeptide. A quantitative analysis of the gels was complicated by partial aggregation of polypeptides that occurs due to prolonged incubation in Triton X-100, but at least 65% of the protein in the preparation of purified transporter is the 46 kDa polypeptide. The extracellular domain of the transporter is very resistant to proteolysis; no cleavage occurred upon treatment of intact erythrocytes with seven different proteases at high concentration.  相似文献   

10.
Erythrocytes bearing the Rh(D) antigen have an Mr 30,000 integral membrane protein which can be surface-labeled with 125I and can be quantitatively immunoprecipitated from Triton X-100-solubilized spectrin-depleted membrane vesicles. The 125I-labeled Rh(D)-associated protein was purified to radiochemical homogeneity from membrane skeletons solubilized in sodium dodecyl sulfate and urea by hydroxylapatite chromatography, gel filtration, and preparative polyacrylamide gel electrophoresis. The Rh(D)-associated protein was purified nearly 200-fold from 2 units of erythrocytes from DD individuals by employing similar methods on a large scale using the purified 125I-labeled Rh(D)-associated protein as a tracer. The product appeared to be greater than 95% pure and migrated as a diffuse band of Mr approximately 30,000-32,000 on silver-stained sodium dodecyl sulfate electrophoresis gels poured from 12% acrylamide. It is estimated that the Rh(D)-associated protein makes up approximately 0.5% of the original membrane protein. When concentrated, partially purified Rh(D)-associated protein forms dimers and larger oligomers which are stable in sodium dodecyl sulfate and urea. The Rh(D)-associated protein was protected from degradation when intact erythrocytes or inside out membrane vesicles were enzymatically digested. These studies indicate that the Mr 30,000 protein associated with the Rh(D) antigen is linked to the membrane skeleton, resides within the lipid bilayer with minimal extra- or intracellular protrusions, exists normally as an oligomer, and can be purified in denatured form.  相似文献   

11.
Four detergents have been compared for identification of the Plasmodium knowlesi variant antigen on infected erythrocytes by immunoprecipitation analysis. Erythrocytes infected with late trophozoite and schizont forms of cloned asexual parasites were labeled by lactoperoxidase-catalyzed radioiodination and extracted either with the anionic detergents sodium dodecyl sulfate (SDS) or cholate, the neutral detergent Triton X-100, or the zwitterion 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). After addition of Triton X-100 to SDS and cholate extracts, parallel immunoprecipitations of the four extracts were performed using rhesus monkey antisera of defined agglutinability. Identical results were obtained with clone Pk1(A+), which has 125I-variant antigens of Mr 210,000 and 190,000, and with clone Pk1(B+)1+, which has variant antigens of Mr 200,000-205,000. SDS yielded maximal levels of immunoprecipitated 125I-variant antigens. Variant-specific immunoprecipitation was detected in some experiments with Triton X-100 and cholic acid but with significantly lower recovery than with SDS. CHAPS extraction did not yield the variant antigens on immunoprecipitation. The variant antigens could also be identified in Triton X-100-insoluble material by subsequent extraction with SDS, indicating that failure to recover these proteins in the Triton X-100-soluble fraction is due to failure of this detergent to extract the variant antigens rather than to degradation during extraction. We suggest that the 125I-variant antigens either have a structure that renders them intrinsically insoluble in Triton X-100, cholate, or CHAPS, or that they are associated in some way with host cell membrane components that also resist solubilization by these detergents.  相似文献   

12.
In the preceding article, we described physicochemical and kinetic properties of parathyroid hormone (PTH) receptors in clonal rat osteosarcoma cells (ROS 17/2.8) using photoaffinity ligand labeling and showed that the physiologically relevant receptor-ligand complex has an apparent Mr = 80,000. In this study, the photoaffinity labeled Mr = 80,000 receptor was localized exclusively on the cell surface plasma membrane and its glycoprotein nature was demonstrated through the use of lectin affinity-chromatography and specific exo- and endoglycosidases. Rinsing ROS cells, preincubated in the dark with 125I-labeled [Nle8, N-epsilon-(4-azido-2-nitrophenyl)Lys13,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NAP-NlePTH) (4 h, 15 degrees C, equilibrium conditions) with acidic phosphate-buffered saline (pH 2.5, 30 s, 4 degrees C) before photolysis resulted in selective and nearly total disappearance of the labeled Mr = 80,000 receptor. PTH receptor integrity to acid rinsing and photolysis was shown by relabeling the Mr = 80,000 receptor after a second incubation of these cells with 125I-labeled NAP-NlePTH, followed by photolysis. Adsorption of Triton X-100-solubilized, 125I-labeled NAP-NlePTH receptors to wheat germ agglutinin-agarose is nearly complete and highly selective, and elution with N-acetylglucosamine resulted in virtually total recovery of the labeled receptors from the column. The wheat germ agglutinin-retarded PTH receptors show increased electrophoretic mobility upon treatment with neuraminidase which was inhibited by simultaneous addition of 2,3-dehydro-3-desoxy-N-acetylneuraminic acid, a specific neuraminidase inhibitor. Endoglycosidase F treatment of the Mr = 80,000 receptors generated a single, labeled polypeptide with a Mr = 59,000 which migrated as a narrow band. PTH receptors on ROS 17/2.8 cells appear to be monomeric plasma membrane glycoproteins with an apparent Mr of 80,000 which contain a Mr = 59,000 polypeptide backbone and a polymeric arrangement of N-acetylglucosamine with N-acetylneuraminic acid as major terminal sugar residues.  相似文献   

13.
Transbilayer movement of cholesterol in the human erythrocyte membrane   总被引:3,自引:0,他引:3  
The rate of transbilayer movement of cholesterol was measured in intact human erythrocytes. Suspended erythrocytes were incubated briefly with [3H]cholesterol in ethanol at 4 degrees C, or with liposomes containing [3H]cholesterol over 6 hr at 4 degrees C to incorporate the tracer into the outer leaflet of erythrocyte plasma membranes. The erythrocytes were then incubated at 37 degrees C to allow diffusion of cholesterol across the membrane bilayer. Cells were treated briefly with cholesterol oxidase to convert a portion of the outer leaflet cholesterol to cholestenone, and the specific radioactivity of cholestenone was determined over the time of tracer equilibration. The decrease in specific radioactivity of cholestenone reflected transbilayer movement of [3H]cholesterol. The transbilayer movement of cholesterol had a mean half-time of 50 min at 37 degrees C in cells labeled with [3H]cholesterol in ethanol, and 130 min at 37 degrees C in cells labeled with [3H]cholesterol exchanged from liposomes. The cells were shown, by the absence of hemolysis, to remain intact throughout the assay. The presence of 1 mM Mg2+ in the assay buffer was essential to prevent hemolysis of cells treated with cholesterol oxidase perturbed the cells, resulting in an accelerated rate of apparent transbilayer movement. Our data are also consistent with an asymmetric distribution of cholesterol in erythrocyte membranes, with the majority of cholesterol in the inner leaflet.  相似文献   

14.
The characteristics of cytoskeleton fractions prepared from rat red cell ghosts with four non-ionic detergents were studied. One percent (w/v) solutions of Triton X-100, Emulgen 911, MEGA-9 (nonanoyl-N-methylglucamide), and octylglucoside solubilized 78, 68, 80, and 92% of the ghost phospholipid, while they solubilized 82, 78, 72, and 62% of the ghost band 3, a transmembrane protein, respectively. There was no correlation between the solubilization percentages of phospholipid and band 3. Phospholipids retained in cytoskeleton fractions were shown to exist as blebs on the surface by electron microscopic observation. The cytoskeleton fraction prepared with octylglucoside retained about two-fold more band 3 than that with Triton X-100 (Triton shells). However, cytoskeleton fractions prepared from p-chloromercuribenzoate-treated ghosts with the two detergents retained almost equal amounts of band 3, less than 5% of that in the ghosts. Under this condition, most of band 2.1, a protein linking band 3 to the spectrin-actin network, was released from the cytoskeleton fractions. The band 3 solubilized with octylglucoside sedimented faster in a linear sucrose gradient and had a larger Stokes' radius than that with Triton X-100, which is known to exist as dimer. These results strongly suggest that octylglucoside does not disturb the association of tetrameric band 3 with the spectrin-actin network, while Triton X-100 dissociates tetrameric band 3 to the dimer, resulting in the difference in the amount of band 3 retained in cytoskeleton fractions. In conclusion, octylglucoside can produce a more native cytoskeleton fraction of red cell membranes than Triton shells.  相似文献   

15.
When insulin receptors of rat skeletal muscle sarcolemmal vesicles were solubilized with Triton X-100, the specific binding of 125I-labeled insulin increased by more than 10-fold over that seen in the intact vesicles. Partial purification of the skeletal muscle insulin receptors on wheat germ agglutinin affinity columns increased the total insulin binding activity by 7-fold and reduced the Kd for insulin binding from 1.92 to 0.20 nM, suggesting that an inhibitor of insulin binding was removed by this purification step. This was confirmed when the unbound fractions of the affinity column were dialyzed and reconstituted with the insulin receptors. The inhibitory activity in the sarcolemmal extract could not be accounted for by the presence of Triton X-100. The skeletal muscle inhibitor was more potent in inhibiting insulin binding to skeletal muscle insulin receptors than to liver or adipose receptors. The inhibitor was very effective in inhibiting insulin binding to wheat germ agglutinin-purified IM-9 receptors, but had negligible effects on insulin binding to intact IM-9 cells. The properties of the alpha and beta subunits of the skeletal muscle insulin receptors appear to be the same as those of insulin receptors of other tissues: cross-linking of 125I-labeled insulin to the receptor revealed a band of 130,000 daltons, and insulin stimulated the phosphorylation of bands of 90,000 and 95,000 daltons in the receptor preparation. The skeletal muscle insulin binding inhibitor elutes from molecular sieves in a major 160,000-dalton peak and minor 75,000-dalton peak. The binding inhibitor is not inactivated by heat, by mercaptoethanol, or by trypsin, pepsin, or proteinase K. Collectively, these data suggest that the inhibitor may be a small molecule that aggregates with itself, with larger proteins, or with detergent micelles.  相似文献   

16.
After osmotic shock with 50 mM Tricine buffer (pH 7.9), isolated mitochondria from D. Melanogaster embryos are treated with a low concentration of Triton X-100 (25 micrograms/mg of protein). The lysed mitochondria are still capable of RNA and protein synthesis. While incorporation of labeled precursor is often higher in lysed than in intact mitochondria, neosynthesized proteins exhibit similar electrophoretic patterns. Studies of labeled precursor incorporation in the presence of various effectors indicate a better accessibility to the translation machinery in lysed mitochondria than in intact mitochondria. Such a system has proven capable of translating an exogenous synthetic mRNA, i.e., poly (U).  相似文献   

17.
The Rho(D) antigen was recently identified as a 28,000 to 33,000 m.w. polypeptide expressed on the surface of human Rho(D)+ cells. We now show that 70 to 80% of the Rho(D) polypeptides remain firmly associated with the membrane skeleton (detergent-insoluble matrix) obtained after treatment of isolated membranes with Triton X-100. The same treatment solubilized most of the major sialoglycoprotein, glycophorin A. The membrane skeleton-bound Rho(D) polypeptides were not solubilized by procedures that dissociated spectrin, actin, and glyceraldehyde-3-phosphate dehydrogenase from the membrane. Affinity-purified 125I-labeled anti-Rho(D) antibodies bound to intact Rho(D)+ cells, Rho(D)+ membranes, and isolated membrane skeletons from Rho(D)+ cells, but not to Rho(D)- cells. The binding to Rho(D)+ cells was competitively inhibited efficiently by Rho(D)+ membranes and weakly by Rho(D)- membranes. When isolated unsealed Rho(D)+ and Rho(D)- membranes were labeled by lactoperoxidase-catalyzed iodination and solubilized in Triton X-100, Rho(D) polypeptides were immune precipitated only from Rho(D)+ membranes.  相似文献   

18.
The identification of antigens of parasite origin associated with the altered membrane of Plasmodium vivax-infected erythrocytes was undertaken in this study. The 125I-lactoperoxidase catalyzed surface radiolabeling of trophozoite-infected erythrocytes revealed new bands of 95 and 70 kDa not labeled in normal erythrocytes. Erythrocyte membrane-enriched preparations from [35S]methionine biosynthetically labeled-infected erythrocytes also indicated that in addition to bands at 95 and 70 kDa, several other parasite proteins were possibly membrane associated. Five monoclonal antibodies (Mabs) reactive with P. vivax produced an immunofluorescent pattern of numerous small dots scattered over the entire infected erythrocyte. This pattern mimics that of Schuffner's stippling; small red dots seen in Giemsa-stained P. vivax-infected erythrocytes, which represent accumulations of dye in caveola-vesicle complexes (CVC). Four of the monoclonal antibodies immunoprecipitated a Triton X-100 detergent-insoluble 95-kDa parasite protein which was localized by immunofluorescent assay and immunoelectron microscopy exclusively to the CVC. Two of these Mabs were immunofluorescence reactive with the surface of intact infected erythrocytes in suspension. The fifth Mab, which also localized exclusively to the CVC structures, immunoprecipitated a Triton X-100 extractable protein of 70 kDa. Two other monoclonal antibodies reacted exclusively with the numerous membranous cleft structures found in the cytoplasm of infected erythrocytes. This cleft-associated parasite antigen was 28 kDa in size. Some of these Mabs recognize epitopes and produce similar IFA patterns on erythrocytes infected with P. cynomolgi, P. knowlesi, and P. ovale parasites, but not with P. falciparum- or P. brasilianum-infected erythrocytes.  相似文献   

19.
We have measured the association of platelet surface membrane proteins with Triton X-100 (Triton)-insoluble residues in platelets surface labeled with 125I. In both concanavalin A (Con A)-stimulated and resting platelets, this fraction is composed largely of polypeptides with apparent molecular weights of 45,000, 200,000, and 250,000 which comigrate with authentic actin, myosin heavy chain, and actin binding protein, respectively, as judged by PAGE in SDS. Less than 10% of the two major 125I-labeled surface glycoproteins, GPiib and GPIII, were associated with the Triton residue in resting platelets. Within 45 s after Con A addition, 80-95% of these two glycoproteins became associated with the Triton residue and the amount of sedimentable actin doubled. No cosedimentation of GPIIb and III with the cytoskeletal protein-containing Triton residue was seen when Con A was added to a Triton extract of resting cells, indicating that the sedimentation of GPIIb and III seen in Con A-stimulated platelets was not due to precipitation of the glycoproteins by Con A after detergent lysis. Treatment of Triton extracts of Con A-stimulated platelets with DNase I (deoxyribonucleate 5'-oligonucleotidido-hydrolase [EC 3.1.4.5]) inhibited the sedimentation of actin and the two surface glycoproteins in a dose-dependent manner. This inhibition of cosedimentation was not due to an effect of DNase I on Con A-glycoprotein interactions since these two glycoproteins could be quantitatively recovered by Con A- Sepharose affinity absorption in the presence of DNase I. When the Con A bound to the Triton residue was localized ultrastructurally, it was associated with cell-sized structures containing filamentous material. In intact cells, there was simultaneous immunofluorescent coredistribution of surface-bound Con A and myosin under conditions which induced a redistribution of platelet myosin. These data suggest that Con A can, in the intact platelet, induce physical interactions between certain surface glycoproteins and the internal cytoskeleton.  相似文献   

20.
An iodinatable photoactive analog of GDP-fucose, GDP-hexanolaminyl-4-azidosalicylic acid, has been prepared and applied to studies of the previously described alpha 1----3-fucosyltransferase from NCI-H69 cells (Holmes, E. H., Ostrander, G. K., and Hakomori, S. (1985) J. Biol. Chem. 260, 7619-7627). The NCI-H69 cell alpha 1----3-fucosyltransferase was obtained from a 0.2% Triton X-100-solubilized enzyme fraction after affinity purification on a GDP-hexanolamine-Sepharose column and gel filtration through a fast protein liquid chromatography Superose 12 column. Increasing concentrations of the photoaffinity reagent were found to result in loss of up to 35% of the original enzyme activity at under 100 microM final concentrations. The inactivation was photolysis dependent and could be prevented by the addition of GDP-fucose prior to photolysis. The photoprobe behaved as a competitive inhibitor with respect to GDP-fucose with a Ki of 23 microM, identical to that of GDP. Photoincorporation of 125I-labeled GDP-hexanolaminyl-4-azidosalicylic acid into the enzyme fraction labeled a slow migrating protein band in a native polyacrylamide gel which corresponded to enzyme activity. Inclusion of GDP-fucose prevented photolabeling of this band. Sodium dodecyl sulfate gel electrophoresis of the photolabeled, GDP-fucose-protected band yielded a 125I-labeled protein band that migrated at Mr 45,000, most probably corresponding to an alpha 1----3-fucosyltransferase protein subunit. These studies suggest photoaffinity labeling using nucleotide affinity ligands linked to photoactivatable, heterobifunctional cross-linking reagents may be generally applicable to photoaffinity labeling glycosyltransferase enzyme proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号