首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
HEC1A endometrial cancer cells express the wild-type form of the estrogen receptor (ER) and 17β-estradiol (E2) induces proliferation of these cells. In contrast, tamoxifen only causes a minimal increase (<20%) in cell proliferation. In HEC1A cells transiently transfected with the C3-Luc plasmid derived from the complement C3 gene, both E2 and tamoxifen exhibited ER agonist activity and tamoxifen was also a partial antagonist for this response. The relative ER agonist/antagonist activities of E2, tamoxifen and ICI 182,780 were also investigated in HEC1A1 cells transiently transfected with two E2-responsive plasmids, pCATHD-CAT and pCKB-CAT which contain 5′-promoter inserts from the cathepsin D and creatine kinase B genes, respectively. The results showed that E2 and tamoxifen induced reporter gene activity in cells transiently transfected with both constructs. ICI 182,780 exhibited partial ER agonist activity only in cells transiently transfected with pCKB-CAT and antagonized E2-induced reporter gene activity using both the CKB- and CATHD-derived constructs. These results demonstrate that HEC1A endometrial cancer cells are E2-responsive and represent a useful cell culture model for understanding hormone/antihormone-induced endometrial cell responses.  相似文献   

6.
7.
8.
17Beta-estradiol (17beta-E2) elicits at the cell membrane rapid actions that remain insensitive to the inhibitory effect of ICI 182,780, a pure estrogen antagonist, and therefore cannot be attributed to the classic nuclear receptors. We addressed the question of the identity of the protein involved in these rapid actions. We first examined the responses of several cell lines for intracellular calcium mobilization, an effect not inhibited by ICI 182,780, tamoxifen and raloxifen. We then demonstrated the presence of binding sites in the membranes, by incubating them with antibodies directed against different domains of ER alpha, and by flow cytometry analysis. The membrane proteins were eluted by affinity chromatography using E2 conjugated to bovine serum albumin as a ligand. Western blots of the elution fractions using an antibody directed against the ligand binding site of ER alpha showed the existence of a protein of approximately 50 kDa. The protein was concentrated in the lipid rafts, together with another heavier form of approximately 66 kDa. The 50 kDa protein was immunoprecipitable, and co-immunoprecipitation experiments showed that it was associated with the Gbeta(1-4) protein, but not with caveolin-1. The protein was expressed in ER alpha-null cells, like HO-23 and Cos-7 cells. Therefore, in the lipid rafts, there exists a protein, similar to, but molecularly distinct from ER alpha.  相似文献   

9.
Glucocorticoids exert potent anti-inflammatory effects by repressing proinflammatory genes. We previously demonstrated that estrogens repress numerous proinflammatory genes in U2OS cells. The objective of this study was to determine if cross talk occurs between the glucocorticoid receptor (GR) and estrogen receptor (ER)α. The effects of dexamethasone (Dex) and estradiol on 23 proinflammatory genes were examined in human U2OS cells stably transfected with ERα or GR. Three classes of genes were regulated by ERα and/or GR. Thirteen genes were repressed by both estradiol and Dex (ER/GR-repressed genes). Five genes were repressed by ER (ER-only repressed genes), and another five genes were repressed by GR (GR-only repressed genes). To examine if cross talk occurs between ER and GR at ER/GR-repressed genes, U2OS-GR cells were infected with an adenovirus that expresses ERα. The ER antagonist, ICI 182780 (ICI), blocked Dex repression of ER/GR-repressed genes. ICI did not have any effect on the GR-only repressed genes or genes activated by Dex. These results demonstrate that ICI acts on subset of proinflammatory genes in the presence of ERα but not on GR-activated genes. ICI recruited ERα to the IL-8 promoter but did not prevent Dex recruitment of GR. ICI antagonized Dex repression of the TNF response element by blocking the recruitment of nuclear coactivator 2. These findings indicate that the ICI-ERα complex blocks Dex-mediated repression by interfering with nuclear coactivator 2 recruitment to GR. Our results suggest that it might be possible to exploit ER and GR cross talk for glucocorticoid therapies using drugs that interact with ERs.  相似文献   

10.
T47D human breast cancer cells were cultured in estrogen-deficient media for up to 32 months and the resulting cell line (L(hE(-))) exhibited unique phenotypic and genotypic characteristics. Compared to low passage (L) cells, the L(hE(-)) cells exhibited a significantly higher rate of proliferation, unique morphological features, advanced ploidy status and 5- to 10-fold higher levels of the estrogen receptor (ER) as determined by ligand binding and Western blot analysis. Sequence analysis of the DNA binding domain of the ER revealed a C-->A transversion which resulted in a H513N amino acid change. Treatment of L cells with 10 n m 17beta-estradiol (E2) resulted in a greater than two-fold increase in cell proliferation which was inhibited by tamoxifen, 4'-hydroxytamoxifen, ICI 164,384 and ICI 182,780. In contrast, 10 n m E2 caused a 70% decrease in growth of L(hE(-)) cells and this antimitogenic activity was blocked by ICI 164,384 and ICI 182,780 but not by tamoxifen or 4'-hydroxytamoxifen. L(hE(-)) cells were E2-responsive in transient transfection studies using a plasmid containing an estrogen-responsive element derived from the vitellogenin A2 gene promoter. These data show that the phenotypic and genotypic characteristics of L(hE(-)) T47D cells resemble those described for ER-negative cell lines stably transfected with the ER.  相似文献   

11.
Estrogen has been considered to be a neuroprotectant and a neuromodulator in many neuronal cell lines and tissue preparations. The protective effects of estrogen may be mediated through classical estrogen receptors (ERs), or may be due to its anti-oxidant properties which are independent of receptors. The current studies show that 17beta-estradiol (E2) is neuroprotective against beta-amyloid protein 25-35 (Abeta)-, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-, high density culture condition-, and serum deprivation-induced neuronal death in SK-N-SH human neuroblastoma cells. SK-N-SH cells express ERbeta, but not ERalpha, as detected by Western blot analysis. Among all the insults, MPTP, high density culture and serum deprivation induce apoptotic cell death in this cell system as detected by ELISA determination of mono/oligonucleosomes and DNA laddering, while Abeta induces necrotic cell death. The protective effects of E2 are abolished by the addition of tamoxifen and ICI 182,780 in the MPTP treated cells, but not in the other models, suggesting that the effect of E2 in the MPTP model is probably associated with activation of ERbeta. The addition of ICI 182,780 shows a mitogenic effect in SK-N-SH cells in the presence of E2 in control culture or in the Abeta treated groups. Also, ICI 182,780 induced expression of ERalpha. Collectively, the current studies suggest that E2 is neuroprotective in apoptotic and necrotic death induced by multiple insults in SK-N-SH human neuroblastoma cells. Involvement of ER is insult type dependent. ICI 182,780 is able to influence the expression of ERs, probably through upregulation of ERalpha when ERbeta is totally antagonized.  相似文献   

12.
Florian M  Lu Y  Angle M  Magder S 《Steroids》2004,69(10):637-645
OBJECTIVES: Acute administration of estrogen results in vasodilation and increased nitric oxide (NO) production. We examined the hypothesis that this is due to activation of Akt/PKB which subsequently increases eNOS activity. METHODS AND RESULTS: Treatment of bovine microvascular and human umbilical endothelial cells (HUVEC) with 17-beta-estradiol (E2) (10(-9) to 10(-5)M) increased phosphorylation of Akt within 1 min and this was followed by phosphorylation of eNOS. These effects were blocked by wortmannin, a PI(3)K inhibitor and the upstream activator of Akt. The estrogen receptor antagonist, ICI 182,780, inhibited eNOS phosphorylation. E2 increased calcium dependent NOS activity and nitrite production and this was inhibited by wortmannin and ICI 182,780. E2 increased the vasodilatory response of aortic rings to acetylcholine and wortmannin blocked the effect. E2 (10(-9)M) dilated cerebral microvascular vessels under conditions of no flow, constant flow and increasing flow and this was blocked by wortmannin. Tamoxifen, a partial estrogen receptor antagonist, also dilated the microvessels. CONCLUSIONS:: E2 increases NO production through an Akt/PKB dependent pathway. This is associated with increased sensitivity to endothelial dependent dilation. In cerebral microvessels, E2 and tamoxifen produce significant dilation at low concentrations with and without acetylcholine induced stimulation of endothelial vasodilation.  相似文献   

13.
A prolonged treatment with 17beta-estradiol reduces the frequency of spontaneous oscillations and the Na+/K+ ATPase activity in rat uteri. Acute inhibition of Na+/K+ ATPase activity by a Na+/K+ ATPase inhibitor, ouabain, decreases the frequency of oxytocin-induced oscillations in uteri. Therefore, the purpose of this study was to examine whether the prolonged inhibition of Na+/K+ ATPase activity by 17beta-estradiol was estrogen receptor (ER)-dependent. The uterine explants from ovariectomized rats were cultured in vitro as our experimental model to compare the effect of two antiestrogenic compounds (ICI 182,780 and tamoxifen) on the Na+/K+ ATPase activity and the frequency of spontaneous oscillations. ATPase assay and a standard muscle bath apparatus were to measure the activity and the contraction. When compared with the control, a 2-day treatment with 17beta-estradiol in vivo or in vitro decreased the activity and the frequency. ICI 182,780 lowered the activity but tamoxifen did not. ICI 182,780 did not decrease the frequency but tamoxifen did. Even the reversal effects of these antiestrogenic compounds on the reduced activity and the frequency by 17beta-estradiol were different. Tamoxifen elicited a greater reversal effect on the reduced activity but ICI 182,780 did not. In contrast, ICI 182,780 elicited a greater reversal effect on the reduced frequency but tamoxifen did not. Prolonged inhibition of Na+/K+ ATPase activity by K+-free solution suppressed the frequency with the elevation of basal tension. Addition of KCl at lower concentrations (0.3-1.2 mM) induced oscillatory contraction after reducing the basal tension. As our data suggest, the prolonged effect of 17beta-estradiol may decrease uterine the activity through ER dependent and independent pathways. The reduction of uterine Na+/K+ ATPase activity by estrogens may increase the basal tension after each oscillatory cycle, which, in part, contributes to the reduced frequency of spontaneous oscillations.  相似文献   

14.
15.
16.
17.
18.
The interactions of human estrogen receptor subtypes ERalpha and ERbeta with DNA and a 210 amino acid residue fragment of the coactivator protein SRC-1 bearing three nuclear receptor interaction motifs were investigated quantitatively using fluorescence anisotropy in the presence of agonist and antagonist ligands. ERalpha and ERbeta were found to bind in a similar manner to DNA, and both salt and temperature affected the affinity and/or stoichiometry of these interactions. The agonist ligands estradiol, estrone and estriol did not modify the binding of ERalpha to the fluorescein-labeled target estrogen response element. However, in the case of ERbeta, these ligands led to the formation of some higher-order protein-DNA complexes and a small decrease in affinity. The partial agonist 4-hydroxytamoxifen had little effect on either ER subtype, whereas the pure antagonist ICI 182,780 led to the cooperative formation of protein-DNA complexes of higher order than dimer, as further demonstrated by competition experiments and gel mobility-shift assays. In addition to DNA binding, the interaction of both ER subtypes with the Alexa488-labeled SRC-1 coactivator fragment was investigated by fluorescence anisotropy. The agonist ligands estrone, estradiol, estriol, genistein and ethynyl estradiol exhibited distinct capacities for inducing the recruitment of SRC-1 that were not correlated with their affinity for the receptor. Moreover, estrone and genistein exhibited subtype specificity in that they induced SRC-1 recruitment to ERbeta with much higher efficiency than in the case of ERalpha. The differential coactivator recruitment capacities of the ER agonists and their receptor subtype coactivator recruitment specificity may be linked to the molecular structure of the agonists with respect to their interactions with a specific histidine residue located at the back of the ligand-binding pocket. Altogether, these quantitative in vitro studies of ER interactions reveal the complex energetic and stoichiometric consequences of changes in the chemical structures of these proteins and their ligands.  相似文献   

19.
20.
The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号