首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Isolation of an endogenous clonidine-displacing substance from rat brain   总被引:3,自引:0,他引:3  
D Atlas  Y Burstein 《FEBS letters》1984,170(2):387-390
An endogenous substance which specifically displaces clonidine, yohimbine and rauwolscine from rat brain alpha 2-adrenergic receptors, has been isolated. The new compound, designed clonidine-displacing-substance (CDS), has been partially purified by ion exchange chromatography, zone electrophoresis and high performance liquid chromatography (HPLC). CDS binds specifically to alpha 2-adrenergic receptors by competing with either alpha 2-adrenergic agonists or alpha 2-antagonists, but has no effect on the specific binding of [3H]prazosin to alpha 1-adrenergic receptors in rat brain membranes. In the course of isolation, CDS was shown to be neither the endogenous neurotransmitter (-)norepinephrine (NE) nor the guanyl nucleotide GTP which lowers the specific binding of alpha 2-agonists to the alpha 2-adrenergic receptors.  相似文献   

2.
R S Chang  V J Lotti 《Life sciences》1983,32(22):2603-2609
The beta-adrenergic antagonist, [3H]-dihydroalprenolol ([3H] DHA), binds to membranes prepared from the rat vas deferens in a specific and saturable manner. Scatchard and Hill plot analysis indicates a single class of binding sites with no evidence of cooperative interactions. The specific binding sites have a high affinity (Kd = 0.3 nM) and a maximal occupancy estimated to be 460 fmoles [3H]-DHA bound/g wet tissue weight. Beta-adrenergic agonists and/or antagonists inhibit [3H]-DHA binding to rat vas deferens membranes in a stereospecific manner and with a relative order of potency expected for beta-adrenergic receptors of the beta2 subtype. The receptor affinities of various beta-adrenergic antagonists in the rat vas deferens determined using inhibition of [3H]-DHA binding correlated with their receptor affinities determined physiologically using antagonism of isoproterenol-induced inhibition of neurogenic contractions in-vitro.  相似文献   

3.
Similarities and differences in the effect of cocaine on [alpha]-adrenergic and muscarinic receptors were shown in three experimental models. The postsynaptic stimulating effect of cocaine, mediated by [alpha]-adrenergic receptors was revealed in uninnervated chick amnion and innervated rat vas deferens. In vas deferens cocaine caused an increase of the amount of active [alpha]-adrenergic receptors, the appearance of an additional receptor pool, and change in the dimerization level. Cocaine acted as an antagonist on muscarinic receptors of the chick amnion. The inhibition by cocaine of muscarinic receptors in the rat brain cortex membranes led to a decrease in the number of receptors and their partial monomerization. Thus, cocaine influences both the [alpha]-adrenergic and the muscarinic response at the receptor level. Experiments on various objects have shown that cocaine activates the [alpha]-adrenergic response and inhibits the muscarinic one.  相似文献   

4.
1. The small population of [3H]clonidine binding sites in rat fat cell membranes do not have the characteristics of typical alpha 2-adrenoceptors. 2. Clonidine (an alpha 2-adrenoceptor agonist) has no antilipolytic effect on rat fat cells stimulated by theophylline. 3. In contrast to the rat, [3H]clonidine labels an alpha 2-adrenoceptor in hamster fat cell membranes and clonidine exerts a strong antilipolytic effect on theophylline-stimulated lipolysis.  相似文献   

5.
Opioid peptides derived from food proteins. The exorphins.   总被引:7,自引:0,他引:7  
Peptides with opioid activity are found in pepsin hydrolysates of wheat gluten and alpha-casein. The opioid activity of these peptides was demonstrated by use of the following bioassays: 1) naloxone-reversible inhibition of adenylate cyclase in homogenates of neuroblastoma X-glioma hybrid cells; 2) naloxone-reversible inhibition of electrically stimulated contractions of the mouse vas deferens; 3) displacement of [3H]dihydromorphine and [3H-Tyr, dAla2]met-enkephalin amide from rat brain membranes. Substances which stimulate adenylate cyclase and increase the contractions of the mouse vas deferens but do not bind to opiate receptors are also isolated from gluten hydrolysates. It is suggested that peptides derived from some food proteins may be of physiological importance.  相似文献   

6.
The binding of biologically active [3H]propionyl-NPY to rabbit aortic membranes was specific and saturable. Scatchard analysis indicated a single class of binding sites with a Kd of 1.1 nM. The rank order of potencies for displacement of [3H]propionyl-NPY binding by NPY analogs in the aorta correlated with their potencies in displacing binding in brain and their activity in inhibiting contractions of the field-stimulated rat vas deferens. However, differences were noted in the absolute or relative potencies of other related polypeptides both in regards to aorta compared to brain NPY binding and NPY binding compared to activity in the vas deferens. Collectively, the results support proposals for heterogeneity of NPY receptors.  相似文献   

7.
Clonidine and several analogues of clonidine are shown to be useful probes for alpha 2-adrenergic receptors in a comparative study of ligand binding and inhibition of adenylate cyclase. The alpha-adrenergic properties of a new potential probe, N-(4-hydroxyphenacetyl)-4-aminoclonidine hydrochloride, are described. [3H]Clonidine binds to alpha-receptors of NG108-15 neuroblastoma X glioma hybrid cell membranes with Kd values of 1.7 and 33 nM for putative high-affinity and low-affinity sites, respectively. p-Aminoclonidine and hydroxyphenacetyl aminoclonidine displace [3H]clonidine from the high-affinity sites with Kd values of 2.3 and 5.8 nM, respectively. Rat brain alpha 2-receptors also exhibit high affinity toward clonidine, p-aminoclonidine, and hydroxyphenacetyl aminoclonidine, as determined by displacement of specifically bound [3H]clonidine. Clonidine, p-amino-clonidine, and hydroxyphenacetyl aminoclonidine elicit modest inhibition (up to 24%) of NG108-125 adenylate cyclase by interaction with alpha 2-receptors (Kd,app 300, 30, and 130 nM, respectively); these compounds also partially reverse the inhibition elicited by (--)-norepinephrine. Components of the adenylate cyclase assay mixture, particularly ATP, GTP, sodium ions, and a nucleoside-triphosphate-regenerating system, decrease the high-affinity [3H]clonidine binding to NG108-15 membranes; in the presence of these components, alpha-receptors possess only low affinity (Kd 43 nM) for [3H]clonidine. The results are consistent with the concept that certain components required for the receptor-mediated inhibition of adenylate cyclase convert alpha 2-receptors from a high-affinity inactive state to a low-affinity active state.  相似文献   

8.
Membranes of the rat vas deferens were shown to contain a high density of binding sites for [3H] alpha, beta-methylene ATP ([3H] alpha, beta-MeATP), a ligand selective for the P2X purinoceptor. Analysis demonstrated two classes, of high affinity (Kd = 1.8 nM, Bmax (maximum density) = 9.3 pmol/mg of protein) and of low affinity (Kd = 34 nM, Bmax = 29 pmol/mg of protein). The high affinity [3H] alpha, beta-MeATP binding sites were successfully solubilized with 2% digitonin: the Kd was then 1.6 nM. Both the association and dissociation of the receptor-ligand complex were rapid (half-time for association = 6.5 min). The rank order of potency of purinergic ligands in displacing [3H] alpha, beta-MeATP binding from the solubilized preparation was in accord with the pharmacological criteria for P2X purinoceptors. The receptor-detergent complex was separated by sucrose gradient ultracentrifugation from the ATPase enzymes also present in the preparation. The sedimentation coefficient of the receptor-detergent complex was 12.1 S. It was shown that [3H] alpha, beta-MeATP can function as a photoaffinity labeling reagent upon exposure to ultraviolet light; in the rat vas deferens membranes, it thus became cross-linked in a specific manner to a polypeptide of apparent molecular mass = 62,000 daltons, proposed to be the ligand-binding subunit of the functional P2X purinoceptor.  相似文献   

9.
Photolabile derivatives of D-Ala2-Leu5-enkephalin were prepared by synthetic procedures in which a 2-nitro-4-azidophenyl group is linked to the terminal carboxyl group of the enkephalin by means of an ethylenediamine or ethylenediamine beta-alanine spacer. These peptides bind to opiate receptors with nanomolar affinities and inhibit electrically stimulated contractions of the mouse vas deferens and adenylate cyclase activity of NG108-15 neuroblastoma x glioma hybrid cell membranes. Both inhibitions are reversed by the opiate antagonist naloxone. Photolysis of the ligands bound to rat brain membranes results in the loss of approximately 50% of the receptor sites. This decrease in receptor number is blocked by naloxone and requires light. A photolabile [3H]enkephalin derivative labels an equivalent number of sites under similar irradiation conditions.  相似文献   

10.
Opiate binding sites and endogenous opioids in Bufo viridis oocytes   总被引:1,自引:0,他引:1  
Binding sites with high affinity for [3H]naloxone, but not for [3H]morphine and [3H] (D-Ala2, D-Leu5) enkephalin, have been found in membranes of Bufo viridis oocytes. The binding is reversible and saturable. Bound [3H]naloxone is easily displaced both by unlabeled naloxone and bremazocine, much worse by morphine and SKF 10,047; (D-Ala2, D-Leu5) enkephalin and beta-endorphin practically fail to displace [3H]naloxone. Scatchard analysis is consistent with the existence of two classes of binding sites with Kd 15 nM and 10(3) nM. The number of binding sites with high affinity for naloxone is 16 pmol/mg protein of homogenized oocytes which is 20-50-fold higher than in, toad or rat brain. Oocyte extract displaces [3H]naloxone bound with oocytes' membranes and inhibits electrically evoked contractions of the rabbit vas deferens. This inhibition is reversed by naloxone. It is suggested that compounds similar to opiate kappa-agonists exist in oocytes. It cannot be ruled out that they participate via specific receptors in the regulation of oocyte maturation and egg development.  相似文献   

11.
The purpose of the present investigation was to verify the role of the epithelium in the functional response of the rat vas deferens. Our results showed that the contractile effect of cumulative doses of clonidine (3.10(-5)-3.10(-3)) was increased after the removal of the epithelium. The effect of clonidine in epithelium-free vas deferens returned to normal values when an isolated epithelium from another vas deferens was added to the organ bath, showing that the epithelium is responsible for this increase of maximum effect for clonidine. Drugs functionally or structurally related to clonidine, such as oxymetazoline, alpha-methylnorepinephrine and moxonidine, did not have their dose-response curves altered. The curves for other contractile agents, such as noradrenaline, acetylcholine, ATP, 5HT, bradykinin and histamine, or the relaxation induced by isoprenaline and forskolin were also not modified. Electrically-induced contractions at frequencies from 0.1 to 20 Hz and the mechanism of negative feed-back, brought about by clonidine (10(-10)-10(-8) M) through pre-synaptic alpha2-adrenoceptors, were not changed after the removal of epithelium. In conclusion, a significant function of the epithelium in the contractility of the rat vas deferens was demonstrated for clonidine, but not for other agonists.  相似文献   

12.
Comparisons among spontaneously hypertensive (SHR), Kyoto Wistar (KW), and Wistar (W) rats were made of the functional states of central nervous system (CNS) alpha 2-adrenoceptors (clonidine-induced mydriasis) and nonvascular peripheral presynaptic alpha 2-adrenoceptors (clonidine-induced inhibition of the neurogenic twitch of the isolated vas deferens). While there were no differences among the strains of rats in the concentration of clonidine required to produce a 50% inhibition of the electrically evoked contractile response of the vas deferens, there was a significant reduction in the mean effective concentration (ED50) of clonidine to induce mydriasis in SHR as compared with KW and W rats. These observations indicate that CNS alpha 2-adrenoceptors may be functionally more sensitive in SHR. The data also suggest that the sensitivity of nonvascular presynaptic alpha 2-adrenoceptors, at least in the vas deferens, is not altered in hypertensive animals.  相似文献   

13.
Three synthetic analogs of human beta-endorphin (beta h-EP) (I, [Gln8, Gly31]-beta h-EP-Gly-Gly-NH2; II, [Arg9,12,24,28,29]-beta h-EP and III, [Cys11,26, Phe27, Gly31]-beta h-EP), which have been shown to possess potent inhibiting activity to beta h-EP-induced analgesia, were assayed in rat vas deferens and guinea pig ileum bioassay systems. In the rat vas deferens assay, relative potencies of these analogs were beta h-EP, 100; I, 30; II, 40; III, 1, whereas in the guinea pig ileum assay: beta h-EP, 100; I, 184; II, 81; III, 163. From previous studies on their analgesia potency in mice and opiate receptor-binding activity in rat brain membranes, their activity in rat vas deferens correlates well with the analgesic potency and the activity from guinea pig ileum assay shows good correlations with that from the opiate receptor-binding assay.  相似文献   

14.
Fischer 344 (F344) and Lewis rat strains have been shown to exhibit different vulnerability to development or maintenance of opioid seeking behaviours probably due to differences in the endogenous opioid system. Since opioid and alpha(2)-adrenergic mechanisms closely interact in nociception and substance abuse, strain differences may be expected to affect alpha(2)-adrenoceptor-mediated events. The sensitivity of these two strains to alpha(2)-adrenoceptor-mediated antinociception has been reported to be markedly different. In this work we have further studied the function of alpha(2)-adrenoceptors in F344 and Lewis rats by means of several in vivo and in vitro procedures. Comparative studies of [(3)H]RX821002 and [(35)S]GTPgammaS binding revealed that alpha(2)-adrenoceptors could be slightly more responsive to agonist stimulation in the brain cortex of F344 rats, which is in agreement with previous antinociception studies. However, these differences were modest, not observed in the spinal cord and did not translate into functional differences concerning the effects of clonidine on vas deferens contractility and body temperature. Conditioning experiments showed that a moderate dose of clonidine, which is relevant in antinociceptive and opioid antiwithdrawal studies, induces a robust place aversion which is also equivalent in F344 and Lewis rats. This finding underlies the consistency of the effect and its independency of genetic differences between both rat strains. It seems therefore that the pharmacological properties of alpha(2)-adrenoceptors are similar in F344 and Lewis rats, and thus the previously reported differences in clonidine-induced antinociception could be attributed to other factors such as dissimilar endogenous function of specific noradrenergic pathways.  相似文献   

15.
The IC50 value for inhibition of specific [3H]yohimbine binding to rat cerebral cortical membranes by clonidine was increased, and the Hill coefficient (nH) approached unity in the presence of 150 microM GTP. Pretreatment of membranes with islet-activating protein (IAP) in the presence of NAD caused an increase in IC50 and nH values for clonidine compared with control membranes in the absence of GTP, the addition of which was without effect. Scatchard analysis showed that the Bmax value of the high-affinity component in [3H]clonidine binding was decreased by pretreatment with IAP/NAD. GTP in a concentration range of 0.1 microM-1 mM caused a significant elevation of [3H]yohimbine binding. In IAP/NAD-pretreated membranes, however, [3H]yohimbine binding was no longer affected by GTP, although IAP/NAD significantly (p less than 0.01) increased [3H]yohimbine binding compared to control. IAP ADP-ribosylated 41,000 dalton proteins of cerebral cortical membranes. From these results, it can be suggested that inhibitory guanine nucleotide regulatory protein with Mr 41,000 couples to alpha 2-adrenoceptors to regulate binding affinity of agonists and antagonists in membranes of the rat cerebral cortex.  相似文献   

16.
The presence of benzodiazepine binding sites in rat vas deferens was detected using [3H]Ro 5-4864 as a radioligand. The binding of [3H]Ro 5-4864 to the mitochondrial sites is saturable, reversible, and temperature and time dependent. The association rate constant (k1) was 8.7 +/- 0.7 x 10(7) M-1 min-1, and the dissociation rate constant (k-1) was 0.031 +/- 0.003 min-1. The dissociation constant (KD) determined by saturation binding was 5.22 +/- 0.56 nM. The density of binding was 4,926 +/- 565 fmol/mg of protein. The Hill coefficient of binding was 0.99 +/- 0.01, an indication that [3H]Ro 5-4864 binds to a single site. The [3H]Ro 5-4864 binding was inhibited competitively by Ro 5-4864 and 2-hydroxy-5-nitrobenzyl-6-thioguanosine and noncompetitively by PK 11195, nitrendipine, alpha,beta-methylene-ATP, and carboxyatractyloside and was not affected by clonazepam, dicyclohexylcarbodiimide, or protoporphyrin IX. Our data indicate that [3H]Ro 5-4864 binding sites are not identical to those labeled by PK 11195. These binding sites are modulated by the ADP/ATP mitochondrial carrier, and an interaction of dihydropyridines and [3H]Ro 5-4864 binding sites in rat vas deferens is suggested.  相似文献   

17.
1. Specific binding of [3H]ethylketocyclazocine (EkappaC), a prototype kappa-opiate agonist, to slide-mounted rat striatal sections is increased in the presence of 100 mM NaCl at 4 degrees C. 2. Under similar incubation conditions, binding of mu and delta prototype opiates is reduced to almost undetectable levels. 3. Correlation (P less than 0.01) of the ligand selectivity pattern of [3H]EKC displacement with the potencies of various opiate drugs in inhibiting the contractions of the rabbit vas deferens, a kappa-opiate receptor bioassay, suggests that the binding site under study represents the pharmacologically relevant kappa-opiate receptor. 4. Visualization of these kappa-opiate receptors with tritium-sensitive film reveals a striking, highly discrete brain distribution pattern (e.g., striatal patches, habenular stripe) which is similar to that of [3H]dihydromorphine and [3H]naloxone. 5. Soluble [3H]EKC binding sites obtained from rat membranes also possess a kappa-like ligand selectivity pattern, with bremazocine being a potent displacer while mu and delta ligands are almost inactive. 6. A possible explanation of these data is that the "kappa"-opiate binding site in rat brain is one transitional state of an opiate receptor capable of assuming distinct conformations with characteristic ligand selectivity patterns. Other possibilities such as pre and post-synaptic locations should also be considered.  相似文献   

18.
Parameters of [3H]uridine binding to synaptic membranes isolated from rat brain cortex (K(D)=71+/-4 nM, B(max)=1.37+/-0.13 pmol/mg protein) were obtained. Pyrimidine and purine analogues displayed different rank order of potency in displacement of specifically bound [3H]uridine (uridine>5-F-uridine>5-Br-uridine approximately adenosine>5-ethyl-uridine approximately suramin>theophylline) and in the inhibition of [14C]uridine uptake (adenosine>uridine>5-Br-uridine approximately 5-F-uridine approximately 5-ethyl-uridine) into purified cerebrocortical synaptosomes. Furthermore, the effective ligand concentration for the inhibition of [14C]uridine uptake was about two order of magnitude higher than that for the displacement of specifically bound [3H]uridine. Adenosine evoked the transmembrane Na(+) ion influx, whereas uridine the transmembrane Ca(2+) ion influx much more effectively. Also, uridine was shown to increase free intracellular Ca(2+) ion levels in hippocampal slices by measuring Calcium-Green fluorescence. Uridine analogues were found to be ineffective in displacing radioligands that were bound to various glutamate and adenosine-recognition and modulatory-binding sites, however, increased [35S]GTPgammaS binding to membranes isolated from the rat cerebral cortex. These findings provide evidence for a rather specific, G-protein-coupled site of excitatory action for uridine in the brain.  相似文献   

19.
Among rat peripheral tissues examined, Ins(1,4,5)P(3) receptor binding is highest in the vas deferens, with levels about 25% of those of the cerebellum. We have purified the InsP(3) receptor binding protein from rat vas deferens membranes 600-fold. The purified protein displays a single 260 kDa band on SDS/PAGE, and the native protein has an apparent molecular mass of 1000 kDa, the same as in cerebellum. The inositol phosphate specificity, pH-dependence and influence of various reagents are the same for purified vas deferens and cerebellar receptors. Whereas particulate InsP(3) binding in cerebellum is potently inhibited by Ca(2+), particulate and purified vas deferens receptor binding of InsP(3) is not influenced by Ca(2+). Vas deferens appears to lack calmedin activity, but the InsP(3) receptor is sensitive to Ca(2+) inhibition conferred by brain calmedin. The vas deferens may prove to be a valuable tissue for characterizing functional aspects of InsP(3) receptors.  相似文献   

20.
The binding of labelled naloxone, morphine and (D-Ala2,D-Leu5)enkephalin (DADL) to oocyte membranes of the toad Bufo viridis was investigated. The opiate antagonist naloxone binds to the membranes much more effectively than morphine or DADL. The binding of [3H]naloxone is reversible and saturating. The bound [3H]naloxone is readily replaced by unlabelled naloxone or bremazocine (kappa-agonist), far less effectively by morphine (mu-agonist) and SKF 10.047 (sigma-agonist) and is not practically replaced by DADL (delta-agonist), beta-endorphin (epsilon-agonist) and other neuropeptides. Analysis of experimental results in Scatchard plots revealed two types of binding sites with a high (Kd = 15 nM) and low (Kd = 10(3) nM) affinity for naloxone. The number of sites responsible for the binding of naloxone possessing a high affinity is 16 pmol-/mg of oocyte homogenate protein, i.e., 20-50 times as great as in the toad or rat brain. Trypsin and p-chloromercurybenzoate decrease the binding of [3H]naloxone. The oocyte extract is capable of replacing the membrane-bound [3H]naloxone, on the one hand, and of inhibiting the smooth muscle contracture of the rabbit vas deferens, on the other. This inhibition is reversed by naloxone and can also be induced by bremazocine, but not by morphine, DADL and SKF 10.047. In all probability oocytes contain compounds that are similar to opiate kappa-agonists. It may also be possible that these compounds mediate their effects via specific receptors and are involved in the control over maturation of oocytes and early development of toad eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号