首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With available high resolution structures of PSII and a collection of reported redox midpoint potentials for most of the cofactors, it is possible to compare the expected electron tunneling rates with experimental rates to determine which electron transfer reactions are likely to reflect simply engineered electron tunneling, and which are more sophisticated and associated with large product rearrangements or the making and breaking of bonds. Reliable reorganization energies are largely lacking in this photosystem compared to PSI and purple bacteria and contribute about an order of magnitude uncertainty in tunneling rate estimates. Nevertheless it seems clear that as in purple bacterial reaction centers and PSI, with the notable exception of the oxygen evolving center, the majority of electron transfers within PSII are electron-tunneling limited at room temperature. Tunneling simulations also suggest that the short circuit between pheophytin and the adjacent chlorophyll cation may be fast enough to challenge triplet decay as the principle means of charge recombination from Q(A)(-) at room temperature.  相似文献   

2.
We report results of continuum electrostatics calculations of the cofactor redox potentials, and of the titratable group pK(a) values, in hydroxylamine oxidoreductase (HAO). A picture of a sophisticated multicomponent control of electron flow in the protein emerged from the studies. First, we found that neighboring heme cofactors strongly interact electrostatically, with energies of 50-100 mV. Thus, cofactor redox potentials depend on the oxidation state of other cofactors, and cofactor redox potentials in the active (partially oxidized) enzyme differ substantially from the values obtained in electrochemical redox titration experiments. We found that, together, solvent-exposed heme 1 (having a large negative redox potential) and heme 2 (having a large positive redox potential) form a lock for electrons generated during the oxidation reaction The attachment of HAO's physiological electron transfer partner cytochrome c(554) results in a positive shift in the redox potential of heme 1, and "opens the electron gate". Electrons generated as a result of hydroxylamine oxidation travel to heme 3 and heme 8, which have redox potentials close to 0 mV versus NHE (this result is in partial disagreement with an existing experimental redox potential assignment). The closeness of hemes 3 and 8 from different enzyme subunits allows redistribution of the four electrons generated as a result of hydroxylamine oxidation, among the three enzyme subunits. For the multielectron oxidation process to be maximally efficient, the redox potentials of the electron-accepting cofactors should be roughly equal, and electrostatic interactions between extra electrons on these cofactors should be minimal. The redox potential assignments presented in the paper satisfy this general rule.  相似文献   

3.
Cytochromes c are very widespread proteins that play key roles in the electron transfer events associated to a wide variety of physiological redox processes. The function of cytochromes c is, at the broad level, to interact with different partners in order to allow electrons to flow from one protein to another. Here, we focused our attention on the protein-protein interactions that involve mono-heme cytochrome c domains in order to identify possible general vs. specific patterns of intermolecular interactions at the structural level. We observed that a number of physico-chemical properties are statistically different in transient vs. permanent and fused complexes. These include the extent of the protein interface area, the amino acid composition and the packing density at the interface. The understanding of the features of transient redox complexes is of particular importance because of the difficulty of obtaining co-crystals that preserve the physiologically relevant configuration. In addition, we identified three different structural modes of interaction that cover all the structurally characterized cytochrome c interactions except one. The mode of interaction does not correlate with the nature of the complex (transient, permanent, fused). Regardless of the mode of interaction, the distance between the heme iron and the partner metal center or organic cofactor center of mass is typically around 19-20 ? for complexes permitting direct electron transfer between the two sites.  相似文献   

4.
Many oxidoreductases are constructed from (a) local sites of strongly coupled substrate-redox cofactor partners participating in exchange of electron pairs, (b) electron pair/single electron transducing redox centers, and (c) nonadiabatic, long-distance, single-electron tunneling between weakly coupled redox centers. The latter is the subject of an expanding experimental program that seeks to manipulate, test, and apply the parameters of theory. New results from the photosynthetic reaction center protein confirm that the electronic-tunneling medium appears relatively homogeneous, with any variances evident having no impact on function, and that control of intraprotein rates and directional specificity rests on a combination of distance, free energy, and reorganization energy. Interprotein electron transfer between cytochromec and the reaction center and in lactate dehydrogenase, a typical oxidoreductase from yeast, are examined. Rates of interprotein electron transfer appear to follow intraprotein guidelines with the added essential provision of binding forces to bring the cofactors of the reacting proteins into proximity.  相似文献   

5.
The diheme enzyme MauG catalyzes the posttranslational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. It catalyzes three sequential two-electron oxidation reactions which proceed through a high-valent bis-Fe(IV) redox state. Tyr294, the unusual distal axial ligand of one c-type heme, was mutated to His, and the crystal structure of Y294H MauG in complex with preMADH reveals that this heme now has His-His axial ligation. Y294H MauG is able to interact with preMADH and participate in interprotein electron transfer, but it is unable to catalyze the TTQ biosynthesis reactions that require the bis-Fe(IV) state. This mutation affects not only the redox properties of the six-coordinate heme but also the redox and CO-binding properties of the five-coordinate heme, despite the 21 ? separation of the heme iron centers. This highlights the communication between the hemes which in wild-type MauG behave as a single diheme unit. Spectroscopic data suggest that Y294H MauG can stabilize a high-valent redox state equivalent to Fe(V), but it appears to be an Fe(IV)═O/π radical at the five-coordinate heme rather than the bis-Fe(IV) state. This compound I-like intermediate does not catalyze TTQ biosynthesis, demonstrating that the bis-Fe(IV) state, which is stabilized by Tyr294, is specifically required for this reaction. The TTQ biosynthetic reactions catalyzed by wild-type MauG do not occur via direct contact with the Fe(IV)═O heme but via long-range electron transfer through the six-coordinate heme. Thus, a critical feature of the bis-Fe(IV) species may be that it shortens the electron transfer distance from preMADH to a high-valent heme iron.  相似文献   

6.
Polarized absorption microspectrophotometry has been used to detect catalysis and intermolecular electron transfer in single crystals of two multiprotein complexes: (1) the binary complex between Paracoccus denitrificans methylamine dehydrogenase, which contains tryptophan-tryptophylquinone (TTQ) as a cofactor, and its redox partner, the blue copper protein amicyanin; (2) the ternary complex between the same two proteins and cytochrome c-551i. Continuous wave electron paramagnetic resonance has been used to compare the state of copper in polycrystalline powders of the two systems. While catalysis and intermolecular electron transfer from reduced TTQ to copper are too fast to be accessible to our measurements, heme reduction occurs over a period of several minutes. The observed rate constant is about four orders of magnitude lower than in solution. The analysis of the temperature dependence of this apparent constant provides values for the parameters H(AB), related to electronic coupling between the two centers, and lambda, the reorganizational energy, that are compatible with electron transfer being the rate-determining step. From these parameters and the known distance between copper and heme, it is possible to calculate the parameter beta, which depends on the nature of the intervening medium, obtaining a value typical of electron transfer across a protein matrix. These findings suggest that the ternary complex in solution might achieve a higher efficiency than the rigid crystal structure thanks to an as yet unidentified role of protein dynamics.  相似文献   

7.
Soluble quinoprotein dehydrogenases oxidize a wide range of sugar, alcohol, amine, and aldehyde substrates. The physiological electron acceptors for these enzymes are not pyridine nucleotides but are other soluble redox proteins. This makes these enzymes and their electron acceptors excellent systems with which to study mechanisms of long-range interprotein electron transfer reactions. The tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) transfers electrons to a blue copper protein, amicyanin. It has been possible to alter the rate of electron transfer by using different redox forms of MADH, varying reaction conditions, and performing site-directed mutagenesis on these proteins. From kinetic and thermodynamic analyses of the reaction rates, it was possible to determine whether a change in rate is due a change in Delta G(0), electronic coupling, reorganization energy or kinetic mechanism. Examples of each of these cases are discussed in the context of the known crystal structures of the electron transfer protein complexes. The pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase transfers electrons to a c-type cytochrome. Kinetic and thermodynamic analyses of this reaction indicated that this electron transfer reaction was conformationally coupled. Quinohemoproteins possess a quinone cofactor as well as one or more c-type hemes within the same protein. The structures of a PQQ-dependent quinohemoprotein alcohol dehydrogenase and a TTQ-dependent quinohemoprotein amine dehydrogenase are described with respect to their roles in intramolecular and intermolecular protein electron transfer reactions.  相似文献   

8.
Cytochrome bc1 complexes of microorganisms.   总被引:17,自引:2,他引:15       下载免费PDF全文
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae.  相似文献   

9.
In the photosynthetic bacterium, Rhodobacter sphaeroides, the mobile electron carrier, cytochrome c2 (cyt c2) transfers an electron from reduced heme to the photooxidized bacteriochlorophyll dimer in the membrane bound reaction center (RC) as part of the light induced cyclic electron transfer chain. A complex between these two proteins that is active in electron transfer has been crystallized and its structure determined by X-ray diffraction. The structure of the cyt:RC complex shows the cyt c2 (cyt c2) positioned at the center of the periplasmic surface of the RC. The exposed heme edge from cyt c2 is in close tunneling contact with the electron acceptor through an intervening bridging residue, Tyr L162 located on the RC surface directly above the bacteriochlorophyll dimer. The binding interface between the two proteins can be divided into two regions: a short-range interaction domain and a long-range interaction domain. The short-range domain includes residues immediately surrounding the tunneling contact region around the heme and Tyr L162 that display close intermolecular contacts optimized for electron transfer. These include a small number of hydrophobic interactions, hydrogen bonds and a pi-cation interaction. The long-range interaction domain consists of solvated complementary charged residues; positively charged residues from the cyt and negatively charged residues from the RC that provide long range electrostatic interactions that can steer the two proteins into position for rapid association.  相似文献   

10.
The effect of ionic strength on the rate constant for electron transfer has been used to determine the magnitude and charge sign of the net electrostatic potential which exists in close proximity to the sites of electron transfer on various c-type cytochromes. The negatively charged ferricyanide ion preferentially reacts at the positively charged exposed heme edge region on the front side of horse cytochrome c and Paracoccus cytochrome c2. In contrast, at low ionic strength, the positively charged cobalt phenanthroline ion interacts with the negatively charged back side of cytochrome c2, and at high ionic strength at a positively charged site on the front side of the cytochrome. With horse cytochrome c, over the ionic strength range studied, cobalt phenanthroline reacts only at a positively charged site which is probably not at the heme edge. These inorganic oxidants do not react at the relatively uncharged exposed heme edge sites on Azotobacter cytochrome c5 and Pseudomonas cytochrome c-551, but rather at a negatively charged site which is away from the heme edge. The results demonstrate that at least two electron-transferring sites on a single cytochrome can be functional, depending on the redox reactant used and the ionic strength. Electrostatic interactions between charge distributions on the cytochrome surface and the other reactant, or interactions involving uncharged regions on the protein(s), are critical in determining the preferred sites of electron transfer and reaction rate constants. When unfavorable electrostatic effects occur at a site near the redox center, less optimal sites at a greater distance can become kinetically important.  相似文献   

11.
Biochemical reactions involving electron transfer between substrates or enzyme cofactors are both common and physiologically important; they have been studied by means of a variety of techniques. In this paper we review the application of photochemical methods to the study of intramolecular electron transfer in hemoproteins, thus selecting a small, well-defined sector of this otherwise enormous field. Photoexcitation of the heme populates short-lived excited states which decay by thermal conversion and do not usually transfer electrons, even when a suitable electron acceptor is readily available, e.g., in the form of a second oxidized heme group in the same protein; because of this, the experimental setup demands some manipulation of the hemoprotein. In this paper we review three approaches that have been studied in detail: (i) the covalent conjugation to the protein moiety of an organic ruthenium complex, which serves as the photoexcitable electron donor (in this case the heme acts as the electron acceptor); (ii) the replacement of the heme group with a phosphorescent metal-substituted porphyrin, which on photoexcitation populates long-lived excited states, capable of acting as electron donors (clearly the protein must contain some other cofactor acting as the electron acceptor, most often a second heme group in the oxidized state); (iii) the combination of the reduced heme with CO (the photochemical breakdown of the iron-CO bond yields transiently the ground-state reduced heme which is able to transfer one electron (or a fraction of it) to an oxidized electron acceptor in the protein; this method uses a "mixed-valence hybrid" state of the redox active hemoprotein and has the great advantage of populating on photoexcitation an electron donor at physiological redox potential).  相似文献   

12.
Intramolecular electron transfer within proteins is an essential process in bioenergetics. Redox cofactors are embedded in proteins, and this matrix strongly influences their redox potential. Several cofactors are usually found in these complexes, and they are structurally organized in a chain with distances between the electron donor and acceptor short enough to allow rapid electron tunneling. Among the different interactions that contribute to the determination of the redox potential of these cofactors, electrostatic interactions are important but restive to direct experimental characterization. The influence of interaction between cofactors is evidenced here experimentally by means of redox titrations and time-resolved spectroscopy in a chimeric bacterial reaction center (Maki, H., Matsuura, K., Shimada, K., and Nagashima, K. V. P. (2003) J. Biol. Chem. 278, 3921-3928) composed of the core subunits of Rubrivivax gelatinosus and the tetraheme cytochrome of Blastochloris viridis. The absorption spectra and orientations of the various cofactors of this chimeric reaction center are similar to those found in their respective native protein, indicating that their local environment is conserved. However, the redox potentials of both the primary electron donor and its closest heme are changed. The redox potential of the primary electron donor is downshifted in the chimeric reaction center when compared with the wild type, whereas, conversely, that of its closet heme is upshifted. We propose a model in which these reciprocal shifts in the midpoint potentials of two electron transfer partners are explained by an electrostatic interaction between them.  相似文献   

13.
Toxoplasma gondii possesses an apicoplast-localized, plant-type ferredoxin-NADP(+) reductase. We have cloned a [2Fe-2S] ferredoxin from the same parasite to investigate the interplay of the two redox proteins. A detailed characterization of the two purified recombinant proteins, particularly as to their interaction, has been performed. The two-protein complex was able to catalyze electron transfer from NADPH to cytochrome c with high catalytic efficiency. The redox potential of the flavin cofactor (FAD/FADH(-)) of the reductase was shown to be more positive than that of the NADP(+)/NADPH couple, thus favoring electron transfer from NADPH to yield reduced ferredoxin. The complex formation between the reductase and ferredoxins from various sources was studied both in vitro by several approaches (enzymatic activity, cross-linking, protein fluorescence quenching, affinity chromatography) and in vivo by the yeast two-hybrid system. Our data show that the two proteins yield an active complex with high affinity, strongly suggesting that the two proteins of T. gondii form a physiological redox couple that transfers electrons from NADPH to ferredoxin, which in turn is used by some reductive biosynthetic pathway(s) of the apicoplast. These data provide the basis for the exploration of this redox couple as a drug target in apicomplexan parasites.  相似文献   

14.
Cytochrome c550 (cyt c550) is a membrane component of the PSII complex in cyanobacteria and some eukaryotic algae, such as red and brown algae. Cyt c550 presents a bis-histidine heme coordination which is very unusual for monoheme c-type cytochromes. In PSII, the cyt c550 with the other extrinsic proteins stabilizes the binding of Cl(-) and Ca(2+) ions to the oxygen evolving complex and protects the Mn(4)Ca cluster from attack by bulk reductants. The role (if there is one) of the heme of the cyt c550 is unknown. The low midpoint redox potential (E(m)) of the purified soluble form (from -250 to -314mV) is incompatible with a redox function in PSII. However, more positive values for the Em have been obtained for the cyt c550 bound to the PSII. A very recent work has shown an E(m) value of +200mV. These data open the possibility of a redox function for this protein in electron transfer in PSII. Despite the long distance (22?) between cyt c550 and the nearest redox cofactor (Mn(4)Ca cluster), an electron transfer reaction between these components is possible. Some kind of protective cycle involving a soluble redox component in the lumen has also been proposed. The aim of this article is to review previous studies done on cyt c550 and to consider its function in the light of the new results obtained in recent years. The emphasis is on the physical properties of the heme and its redox properties. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

15.
 Nature has engineered a universe of redox proteins to efficiently control the oxidation and reduction of substrates and to convert redox energy into a delocalized transmembrane proton gradient power source. Some rapid physiologically relevant electron transfers are rate limited by electron tunneling. Distance appears to be the principle means naturally selected to control the speed of electron tunneling; free energy and reorganization energy can play important auxiliary roles. Thus, an electron from a biological redox center can tunnel in any direction and is likely to reduce the closest redox center with a favorable free energy. Although it is clearly possible to facilitate electron tunneling by designing covalent bridges in the regions between donors and acceptors, this does not seem to be a strategy that evolution has used. Evolutionary mutagenic adjustment of a bridge-like quality of the amino acid medium may be difficult in the face of heavy selection on the folding, stability and other properties of the protein medium. Repositioning cofactors by even a few angstroms has more profound effects on promoting and retarding rates, independent of the structure of the amino acid medium. Received: 12 January 1997 / Accepted: 5 February 1997  相似文献   

16.
14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites.  相似文献   

17.
Among the 118 genes upregulated by Pseudomonas aeruginosa in response to iron starvation [Ochsner, U. A., Wilderman, P. J., Vasil, A. I., and Vasil, M. L. (2002) Mol. Microbiol. 45, 1277-1287], we focused on the products of the two genes encoding electron transfer proteins, as a means of identifying the redox partners of the heme oxygenase (pa-HO) expressed under low-iron stress conditions. Biochemical and spectroscopic investigations demonstrated that the bfd gene encodes a 73-amino acid protein (pa-Bfd) that incorporates a [2Fe-2S]2+/+ center, whereas the fpr gene encodes a 258-residue NADPH-dependent ferredoxin reductase (pa-FPR) that utilizes FAD as a cofactor. In vitro reconstitution of pa-HO catalytic activity with the newly characterized proteins led to the surprising observation that pa-FPR efficiently supports the catalytic cycle of pa-HO, without the need of a ferredoxin. In comparison, electron transfer from pa-Bfd to pa-HO is sluggish, which strongly argues against the possibility that the seven electrons needed by pa-HO to degrade biliverdin are transferred from NADPH to pa-HO in a ferredoxin (Bfd)-dependent manner. Given that pa-HO functions to release iron from exogenous heme acquired under iron-starvation conditions, the use of a flavoenzyme rather than an iron-sulfur center-containing protein to support heme degradation is an efficient use of resources in the cell. The crystal structure of pa-FPR (1.6 A resolution) showed that its fold is comparable that of the superfamily of ferredoxin reductases and most similar to the structure of Azotobacter vinelandii FPR and Escherichia coli flavodoxin reductase. The latter two enzymes interact with distinct redox partners, a ferredoxin and a flavodoxin, respectively. Hence, findings reported herein extend the range of redox partners recognized by the fold of pa-FPR to include a heme oxygenase (pa-HO).  相似文献   

18.
This paper is a contribution to the discussion of whether the general architecture of electron transfer sites in blue copper proteins is mainly a result of the structural preferences of the metal ion or is induced by the protein. Although the site is probably stable only when protected by the protein, there appears to be no strain from the latter on the structure in the vicinity of the copper atom. For an operative redox site it is further required that the geometry of the site is acceptable for both oxidation states, to avoid high reorganization energy. The site must also be connected to the outer world by suitable tunneling pathways. The blue copper sites appear to fulfill these requirements, but it is difficult to assess the role of evolutionary pressure to form electron transfer proteins in general.  相似文献   

19.
The cytochrome bc1 complex from bovine heart mitochondria is a multi-functional enzyme complex. In addition to electron and proton transfer activity, the complex also processes an activatable peptidase activity and a superoxide generating activity. The crystal structure of the complex exists as a closely interacting functional dimer. There are 13 transmembrane helices in each monomer, eight of which belong to cytochrome b, and five of which belong to cytochrome c1, Rieske iron-sulfur protein (ISP), subunits 7, 10 and 11, one each. The distances of 21 A between bL heme and bH heme and of 27 A between bL heme and the iron-sulfur cluster (FeS), accommodate well the observed fast electron transfers between the involved redox centers. However, the distance of 31 A between heme c1 and FeS, makes it difficult to explain the high electron transfer rate between them. 3D structural analyses of the bc1 complexes co-crystallized with the Qu site inhibitors suggest that the extramembrane domain of the ISP may undergo substantial movement during the catalytic cycle of the complex. This suggestion is further supported by the decreased in the cytochrome bc1 complex activity and the increased in activation energy for mutants with increased rigidity in the neck region of ISP.  相似文献   

20.
The iron-regulated surface determinants (Isd) of Staphylococcus aureus, including surface proteins IsdA, IsdB, IsdC, and IsdH and ATP-binding cassette transporter IsdDEF, constitute the machinery for acquiring heme as a preferred iron source. Here we report hemin transfer from hemin-containing IsdA (holo-IsdA) to hemin-free IsdC (apo-IsdC). The reaction has an equilibrium constant of 10 +/- 5 at 22 degrees C in favor of holo-IsdC formation. During the reaction, holo-IsdA binds to apo-IsdC and then transfers the cofactor to apo-IsdC with a rate constant of 54.3 +/- 1.8 s(-1) at 25 degrees C. The transfer rate is >70,000 times greater than the rate of simple hemin dissociation from holo-IsdA into solvent (k transfer = 54.3 s(-1) versus k -hemin = 0.00076 s(-1)). The standard free energy change, Delta G 0, is -27 kJ/mol for the formation of the holo-IsdA-apo-IsdC complex. IsdC has a higher affinity for hemin than IsdA. These results indicate that the IsdA-to-IsdC hemin transfer is through the activated holo-IsdA-apo-IsdC complex and is driven by the higher affinity of apo-IsdC for the cofactor. These findings demonstrate for the first time in the Isd system that heme transfer is rapid, direct, and affinity-driven from IsdA to IsdC. These results also provide the first example of heme transfer from one surface protein to another surface protein in Gram-positive bacteria and, perhaps most importantly, indicate that the mechanism of activated heme transfer, which we previously demonstrated between the streptococcal proteins Shp and HtsA, may apply in general to all bacterial heme transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号