首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Su CL  Huang LL  Huang LM  Lee JC  Lin CN  Won SJ 《FEBS letters》2006,580(13):3185-3191
Justicia procumbens is a traditional Taiwanese herbal remedy used to treat fever, pain, and cancer. Justicidin A, isolated from Justicia procumbens, has been reported to suppress in vitro growth of several tumor cell lines as well as hepatoma cells. In this study, justicidin A activated caspase-8 to increase tBid, disrupted mitochondrial membrane potential (Delta psi(m)), and caused the release of cytochrome c and Smac/DIABLO in Hep 3B and Hep G2 cells. Justicidin A also reduced Bcl-x(L) and increased Bax and Bak in mitochondria. Caspase-8 inhibitor (Z-IETD) attenuated the justicidin A-induced disruption of Delta psi(m). Growth of Hep 3B implanted in NOD-SCID mice was suppressed significantly by oral justicidin A (20 mg/kg/day). These results indicate that justicidin A-induced apoptosis in these cells proceeds via caspase-8 and is followed by mitochondrial disruption.  相似文献   

2.
RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat. If flax lignans biological properties and health benefits are well documented their roles in planta remain unclear. This loss of function strategy was developed to better understand the implication of the PLR1 enzyme in the lignan biosynthetic pathway and to provide new insights on the functions of these compounds. RNAi plants generated exhibited LuPLR1 gene silencing as demonstrated by quantitative RT-PCR experiments and the failed to accumulate SDG. The accumulation of pinoresinol the substrate of the PLR1 enzyme under its diglucosylated form (PDG) was increased in transgenic seeds but did not compensate the overall loss of SDG. The monolignol flux was also deviated through the synthesis of 8-5′ linked neolignans dehydrodiconiferyl alcohol glucoside (DCG) and dihydro-dehydrodiconiferyl alcohol glucoside (DDCG) which were observed for the first time in flax seeds.  相似文献   

3.
Cell suspension cultures of Linum perenne L. Himmelszelt accumulate justicidin B as the main component together with glycosides of 7-hydroxyjusticidin B (diphyllin). A hypothetical biosynthetic pathway for these compounds is suggested. Justicidin B 7-hydroxylase (JusB7H) catalyzes the last step in the biosynthesis of diphyllin by introducing a hydroxyl group in position 7 of justicidin B. This enzyme was characterized from a microsomal fraction prepared from a Linum perenne Himmelszelt suspension culture for the first time. The hydroxylase activity was strongly inhibited by cytochrome c as well as other cytochrome P450 inhibitors like clotrimazole indicating the involvement of a cytochrome P450-dependent monooxygenase. JusB7H has a pH optimum of 7.4 and a temperature optimum of 26 degrees C. Justicidin B was the only substrate accepted by JusB7H with an apparent K(m) of 3.9+/-1.3 microM. NADPH is predominantly accepted as the electron donor, but NADH was a weak co-substrate. A synergistic effect of NADPH and NADH was not observed. The apparent K(m) for NADPH is 102+/-10 microM.  相似文献   

4.
The production and welfare of intensively reared fish would be improved by reducing stress responsiveness. One approach to achieving this goal is selective breeding utilising stress-responsive genes as direct genetic markers of the desirable trait. As a first step in this process, microarray analysis has been carried out on liver tissues of rainbow trout selectively bred for high (HR) or low (LR) responsiveness to a stressor. Microarray hybridizations provided gene expression profiles for pooled samples of fish confined for 6 h, 24 h and 168 h and for individual fish (168 h only). 161 genes were shown to be differentially regulated in HR and LR fish during confinement exposure and eight of these gene expression profiles were validated by quantitative PCR. Genes of particular interest included intelectin-2 precursor which showed greater than 100-fold higher expression in HR fish compared to LR fish irrespective of whether the fish were confined or not; interferon inducible transmembrane protein 3 which was differentially stress-induced between the two lines; and hepatic pro-opiomelanocortin B (POMC B) which was upregulated during stress in HR fish but downregulated in LR fish. All these offer potential as direct markers of low stress responsiveness in a marker-assisted selection scheme.  相似文献   

5.
Seven homozygous transgenic lines of two European commercial cultivars of rice (Ariete (A) and Senia (S)), harbouring the cry1B or cry1Aa Bacillus thuringiensis (Bt) delta-endotoxin genes, were field evaluated for protection from striped stem borer (SSB) (Chilo suppressalis) damage during the 2001 and 2002 summer crop seasons in the Delta de l'Ebre region, Spain. The plant codon-optimized toxin gene was placed under the control of the promoter of either the constitutive ubi1 gene or the wound-inducible mpi gene from maize. Stable, high-level, insecticidal protein accumulation was observed throughout root, leaf and seed tissues of field-grown plants harbouring the cry1B (lines A64.1, A33.1, A3.4 and S98.9) or cry1Aa (lines S05.1 and A19.14) genes under the control of the ubi1 promoter. Conversely, no toxin was detected in unwounded vegetative tissues of the A9.1 line harbouring the cry1B gene controlled by the mpi promoter, indicating that natural environmental stresses did not trigger the activity of the wound-inducible promoter. However, the toxin accumulated at 0.2% total soluble proteins in A9.1 sheath tissue exhibiting brown lesions resulting from SSB damage. The agronomical traits and performance of the transgenic lines were generally comparable with parental controls, except in the two lines accumulating Cry1Aa, which exhibited a high frequency of plants non-true to type. Natural infestation was assisted with manual infestations of L2/L3 SSB larvae in border control plants surrounding the experimental plots, which served as a reservoir for the second-cycle SSB population. The observation of damage (brown lesions and dead hearts) during the crop season and dissection of plants at harvest stage revealed a range of protection amongst the transgenic lines, which was highly consistent with the level of toxin accumulation and with previous experience in greenhouse assays. Lines A3.4 and S05.1 were found to exhibit stable and full protection against SSB attacks, mediated by the accumulation of Cry1B and Cry1Aa toxin, respectively, which was comparable with that afforded by the spraying of chemical insecticides on control plants. The wound-induced A9.1 line exhibited a satisfactory level of protection, with a notably low level of penetration of SSB larvae in the stems, but higher external symptoms than constitutive lines, probably due to the time lag to benefit from the protective effect of Cry1B.  相似文献   

6.
Tuberculatin, a new lignan apioside, was isolated from Haplophyllum tuberculatum. Chemical transformations and spectral evidence established its structure as 4-O-(β-d-apiofuranosyl)-6,7-dimethoxy-1-(3′, 4′-methylene-dioxyphenyl)-3-hydroxymethylnaphthalene-2-carboxylic acid lactone. Three other known 1-aryl-2,3-naphthalide lignans, diphyllin, justicidin A and B occurring with tuberculatin were isolated and characterized.  相似文献   

7.
8.
To analyze relationships between replication and homologous recombination in mammalian cells, we used replication inhibitors to treat mouse and hamster cell lines containing tandem repeat recombination substrates. In the first step, few double-strand breaks (DSBs) are produced, recombination is slightly increased, but cell lines defective in non-homologous end-joining (NHEJ) affected in ku86 (xrs6) or xrcc4 (XR-1) genes show enhanced sensitivity to replication inhibitors. In the second step, replication inhibition leads to coordinated kinetics of DSB accumulation, Rad51 foci formation and RAD51-dependent gene conversion stimulation. In xrs6 as well as XR-1 cell lines, Rad51 foci accumulate more rapidly compared with their respective controls. We propose that replication inhibition produces DSBs, which are first processed by the NHEJ; then, following DSB accumulation, RAD51 recombination can act.  相似文献   

9.
10.
Selective inhibition of hepatitis B virus replication by RNA interference   总被引:43,自引:0,他引:43  
Small interfering RNA (siRNA) is a powerful tool to silence gene expression in mammalian cells including genes of viral origin. To evaluate the therapeutic efficacy of siRNA against the hepatitis B virus (HBV), we studied the effect of transfection of the HBV-inducible cell lines HepAD38 and HepAD79 with siRNA specific for the core gene of the HBV genome. HepAD38 cells produce wild-type HBV, whereas HepAD79 cells produce the lamivudine resistant YMDD variant. Transfection of HepAD38 cells with either 1.6 or 4 microg/ml siRNA resulted in a profound inhibition (72% and 98%, respectively) of viral replication (as assessed by real-time quantitative PCR). The inhibitory effect was corroborated by a marked reduction of HBV core protein synthesis in induced HepAD38 cells. In HepAD79 cells, transfected with 1.6 or 4 microg/ml HBV-specific siRNA, virus production was reduced by 75% and 89%, respectively.  相似文献   

11.
The mechanism and potential energy surface for the Baeyer-Villiger oxidation of acetone with hydrogen peroxide catalyzed by a Ser105-Ala mutant of Candida antarctica Lipase B has been determined using ab initio and density functional theories. Initial substrate binding has been studied using an automated docking procedure and molecular dynamics simulations. Substrates were found to bind to the active site of the mutant. The activation energy for the first step of the reaction, the nucleophilic attack of hydrogen peroxide on the carbonyl carbon of hydrogen peroxide, was calculated to be 4.4 kcal x mol(-1) at the B3LYP/6-31+G* level. The second step, involving the migration of the alkyl group, was found to be the rate-determining step with a computed activation energy of 19.9 kcal x mol(-1) relative the reactant complex. Both steps were found to be lowered considerably in the reaction catalyzed by the mutated lipase, compared to the uncatalyzed reaction. The first step was lowered by 36.0 kcal x mol(-1) and the second step by 19.5 kcal x mol(-1). The second step of the reaction, the rearrangement step, has a high barrier of 27.7 kcal x mol(-1) relative to the Criegee intermediate. This could lead to an accumulation of the intermediate. It is not clear whether this result is an artifact of the computational procedure, or an indication that further mutations of the active site are required. Figure Second TS (18TS) in the Baeyer-Villiger oxidation in a mutant of CALB. Distances in A  相似文献   

12.
In this study, we analyzed the global gene expression profiles in the subcutaneous fat (SAT) of Jinhua pigs and Landrace pigs at 90 d. Several genes were significantly highly expressed in Jinhua pigs, including genes encoding the rate limiting enzymes in the TCA cycle, fatty acid activation, fatty acid synthesis and triglyceride synthesis. We identified a novel gene tagged by the EST sequences as public No. BF702245.1, which was named porcine FAM134B (pFAM134B) and the pFAM134B mRNA levels of SAT was significantly higher in Jinhua pigs than that in Landrace pigs at 90 d (P < 0.01). Then the effects of pFAM134B on lipid accumulation were investigated by using RNAi and gene overexpression in the subcutaneous adipocytes. The results showed that pFAM134B played a significant positive role in regulating lipid deposition by increasing the mRNA levels of PPARγ, lipogenic genes fatty acid synthetase (FAS) and acetyl-CoA carboxylase (ACC) (P < 0.01) and reducing the mRNA levels of adipose triglyceride lipase (ATGL) and lipase, hormone-sensitive (HSL) (P < 0.01). This study implied that pFAM134B might be a positive factor in lipid deposition, providing insight into the control of fat accumulation and lipid-related disorders.  相似文献   

13.
14.
苯丙氨酸解氨酶(phenylalanin ammonia-lyase,PAL,EC4.3.1.5)是植物通过苯丙烷代谢途径合成木质素的关键酶和限速酶,其通过影响木质素的合成而与果实中石细胞的分化、发育及果实品质密切相关。为了降低鸭梨中苯丙氨酸解氨酶的含量,该研究利用反义PAL基因遗传转化鸭梨、降低鸭梨内源PAL基因的表达。结果表明:(1)采用RT-PCR技术,利用根据Gen Bank中西洋梨PAL基因序列设计特异性引物,扩增得到496 bp的鸭梨PAL基因片段。(2)将扩增片段反向插入载体p BI121的MCS区域,构建植物PAL基因反义表达载体p BI121-As PAL。接着采用电转化法将反义表达载体转入农杆菌EHA105中,并制备出农杆菌工程菌液。(3)利用农杆菌介导法对鸭梨组培苗叶片外植体进行遗传转化,得到23株转基因鸭梨苗。PCR检测证实PAL反义基因片段转入鸭梨中,实时定量PCR检测表明转基因鸭梨苗体内PAL基因表达量均有所降低,为非转基因苗的65%~75%。该研究结果表明利用反义RNA技术获得了抑制内源性PAL基因表达的转基因鸭梨植株,为改善鸭梨果实品质、改良品种奠定了基础。  相似文献   

15.
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   

16.
Activation of the nuclear factor (NF)-κB signaling pathway may be associated with the development of cardiac hypertrophy and its transition to heart failure (HF). The transgenic Myo-Tg mouse develops hypertrophy and HF as a result of overexpression of myotrophin in the heart associated with an elevated level of NF-κB activity. Using this mouse model and an NF-κB-targeted gene array, we first determined the components of NF-κB signaling cascade and the NF-κB-linked genes that are expressed during the progression to cardiac hypertrophy and HF. Second, we explored the effects of inhibition of NF-κB signaling events by using a gene knockdown approach: RNA interference through delivery of a short hairpin RNA against NF-κB p65 using a lentiviral vector (L-sh-p65). When the short hairpin RNA was delivered directly into the hearts of 10-week-old Myo-Tg mice, there was a significant regression of cardiac hypertrophy, associated with a significant reduction in NF-κB activation and atrial natriuretic factor expression. Our data suggest, for the first time, that inhibition of NF-κB using direct gene delivery of sh-p65 RNA results in regression of cardiac hypertrophy. These data validate NF-κB as a therapeutic target to prevent hypertrophy/HF.  相似文献   

17.
18.
Two mutants of the BW5147 mouse lymphoma cell line have been selected for their resistance to the toxic effects of pea lectin. These cell lines, termed PLR1.3 and PHAR1.8 PLR7.2, have a decreased number of high affinity pea lectin-binding sites (Trowbridge, I.S., Hyman, R., Ferson, T., and Mazauskas, C. (1978) Eur. J. Immunol. 8, 716-723). Intact cell labeling experiments using [2-3H]mannose indicated that PLR1.3 cells have a block in the conversion of GDP-[3H]mannose to GDP-[3H]fucose whereas PHAR1.8 PLR7.2 cells appear to be blocked in the transfer of fucose from GDP-[3H]fucose to glycoprotein acceptors. In vitro experiments with extracts of PLR1.3 cells confirmed the failure to convert GDP-mannose to GDP-fucose and indicated that the defect is in GDP-mannose 4,6-dehydratase (EC 4.2.1.47), the first enzyme in the conversion of GDP-mannose to GDP-fucose. The block in the PLR1.3 cells could be bypassed by growing the cells in the presence of fucose, demonstrating that an alternate pathway for the production of GDP-fucose presumably via fucose 1-phosphate is functional in this line. PLR1.3 cells grown in 10 mM fucose showed normal high affinity pea lectin binding. PHRA1.8 PLR7.2 cells synthesize GDP-fucose and have normal or increased levels of GDP-fucose:glycoprotein fucosyltransferase when assayed in vitro. The fucosyltransferases of this clone can utilize its own glycoproteins as fucose acceptors in in vitro assays. These findings indicate that this cell line fails to carry out the fucosyltransferase reaction in vivo despite the fact that it possesses the appropriate nucleotide sugar, glycoprotein acceptors, and fucosyltransferase. The finding of decreased glycoprotein fucose in two independent isolates of pea lectin-resistant cell lines and the restoration of high affinity pea lectin binding to PLR1.3 cells following fucose feeding strongly implicates fucose as a major determinant of pea lectin binding.  相似文献   

19.
The naphthoquinone pigment shikonin from Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae) was the first plant secondary metabolite produced in industrial scale from plant cell cultures. We have now manipulated the biosynthetic pathway leading to shikonin in L. erythrorhizon by introduction of the bacterial gene ubiA. This gene of Escherichia coli encodes 4-hydroxybenzoate-3-polyprenyltransferase, a membrane-bound enzyme that catalyzes a key step in ubiquinone biosynthesis. Using geranyl diphosphate (GPP) as substrate, it is able to catalyze the formation of 3-geranyl-4-hydroxybenzoate (GBA), a principal step of shikonin biosynthesis. The prokaryotic ubiA gene was fused to two signal sequences for targeting of the resulting peptide to the endoplasmic reticulum (ER). Constructs with different constitutive promoters were introduced into L. erythrorhizon using Agrobacterium rhizogenes-mediated transformation. In the resulting hairy root lines, high UbiA enzyme activities could be observed, reaching 133 pkat mg(-1). Expression of ubiA resulted in an accumulation of GBA in an amount exceeding that of the control culture by a factor of 50. However, the ubiA-transformed lines showed only a marginal (average 22%) increase of shikonin production in comparison to the control lines, and there was no significant correlation of UbiA enzyme activity and shikonin accumulation. This suggests that overexpression of ubiA alone is not sufficient to increase shikonin formation, and that further enzymes are involved in the regulation of this pathway.  相似文献   

20.
A modified overlap extension technique for the creation of chimeric genes is described: the method consists in three PCR steps. The first step is a conventional PCR reaction, in which oligonucleotide primers are partially complementary at their 5' ends to the adjacent fragments that are fused to create the chimer. The second PCR step consists in the fusion of the PCR fragments generated in the first step using the complementary extremities of the primers. The third step corresponds to the PCR amplification of the fusion product. The final PCR product is a chimeric gene built up with the different amplified PCR fragments. The technique is illustrated by the construction of a chimeric 5- hydroxytryptamine (5-HT, serotonin)1B/D receptor by combining one part of the human 5-HT1B (h5-HT1B) and two parts of the h5-HT1D receptor gene. The chimeric gene expressed in Cos-7 cells yielded similar binding properties as the wild type h5-HT1D receptor. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号