首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Fascicle types differed morphologically but had similar photosynthetic capacity on a surface area basis.

Abstract

In Pinus species, fascicles can develop with a different number of needles than what is typical. For example, Pinus taeda fascicles typically have three needles, but sometimes have two or four. Although differing fascicle morphology could be a response to changes in the environment designed to optimize carbon gain or minimize water loss, we are unaware of any work comparing physiological differences between fascicles with different numbers of needles. We compared the physiological and morphological characteristics of three- and four-needle fascicles of a loblolly pine clone with an abnormally high abundance of four-needle fascicles to better understand whether differences in needle morphology affected photosynthetic capacity or transpiration. Three- and four-needle fascicles had equal length, diameter, and volume, but four-needle fascicles had significantly greater surface area, mass, and tissue density. Equal fascicle total volume resulted in smaller per-needle volume in four-needle fascicles compared to three-needle fascicles. On a unit surface area basis, light-saturated net assimilation, stomatal conductance and transpiration were similar between the three- and four-needle fascicles although the maximum rate of carboxylation was significantly greater in four-needle fascicles. On a per-fascicle basis, four-needle fascicles had greater transpiration, stomatal conductance, and maximum rate of light-saturated net assimilation. Our results suggest that several factors, including increased tissue density and stomatal density, offset the reduction in needle volume in four-needle fascicles, resulting in similar levels of gas exchange per unit surface area in three- and four-needle fascicles.
  相似文献   

2.
3.

Introduction

Cervical intraepithelial neoplasias (CIN) represent precursor lesions of cervical cancer. These neoplastic lesions are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between grades of cervical intraepithelial neoplasia (CIN) and its fractal dimension was investigated to establish a basis for an objective diagnosis using the method proposed.

Methods

Classical evaluation of the tissue samples was performed by an experienced gynecologic pathologist. Tissue samples were scanned and saved as digital images using Aperio scanner and software. After image segmentation the box counting method as well as multifractal methods were applied to determine the relation between fractal dimension and grades of CIN. A total of 46 images were used to compare the pathologist''s neoplasia grades with the predicted groups obtained by fractal methods.

Results

Significant or highly significant differences between all grades of CIN could be found. The confusion matrix, comparing between pathologist''s grading and predicted group by fractal methods showed a match of 87.1%. Multifractal spectra were able to differentiate between normal epithelium and low grade as well as high grade neoplasia.

Conclusion

Fractal dimension can be considered to be an objective parameter to grade cervical intraepithelial neoplasia.  相似文献   

4.

Background  

In the ewe, ovarian antral follicles emerge or grow from a pool of 2–3 mm follicles in a wave like pattern, reaching greater than or equal to 5 mm in diameter before regression or ovulation. There are 3 or 4 such follicular waves during each estrous cycle. Each wave is preceded by a peak in serum FSH concentrations. The role of pulsatile LH in ovarian antral follicular emergence and growth is unclear; therefore, the purpose of the present study was to further define this role.  相似文献   

5.
Environmental heterogeneity in natural ecosystems influences several parameters at the population and community levels. In freshwater ecosystems, habitat heterogeneity can be provided by macrophyte species with different structural shapes. Previous studies suggest that aquatic plants with more complex architectures will support higher number, biomass, and taxon richness of macroinvertebrates than plants with simpler shape. We investigated the influence of macrophyte structural heterogeneity (quantified by fractal dimension) and food availability (represented by epiphytic biomass) on several parameters (number of individuals, biomass, body size distribution, taxon richness, and diversity) of the macroinvertebrate community in a Pampean stream. Four submerged macrophyte species (Egeria densa, Elodea ernstae, Ceratophyllum demersum, and Stuckenia striata) and associated macroinvertebrates were sampled in late spring, summer, and autumn. Plants were photographed and fractal dimension was estimated from the images by the box-counting method. Fractal dimension was independent of plant surface area per unit of macrophyte biomass and differed significantly among species. Mean fractal dimension varied between 1.29 and 1.62, and increased following the sequence E. densa → S. striata → E. ernstae → C. demersum. Macrophyte species with higher fractal dimension supported a greater abundance of macroinvertebrates, especially those of small body size (500–1,000 μm); but fractal dimension was unrelated to macroinvertebrate biomass, richness, and diversity. However, overall animal biomass was significantly associated to the epiphytic abundance. Consequently, macrophyte heterogeneity influences macroinvertebrate density and body size distribution, while animal biomass depends on epiphytic food resources provided by plants.  相似文献   

6.

Background  

Nonlinear methods provide a direct way of estimating complexity of one-dimensional sampled signals through calculation of Higuchi's fractal dimension (1<FD<2). In most cases the signal is treated as being characterized by one value of FD and consequently analyzed as one epoch or, if divided into more epochs, often only mean and standard deviation of epoch FD are calculated. If its complexity variation (or running fractal dimension), FD(t), is to be extracted, a moving window (epoch) approach is needed. However, due to low-pass filtering properties of moving windows, short epochs are preferred. Since Higuchi's method is based on consecutive reduction of signal sampling frequency, it is not suitable for estimating FD of very short epochs (N < 100 samples).  相似文献   

7.

Background

Several fractal and non-fractal parameters have been considered for the quantitative assessment of the vascular architecture, using a variety of test specimens and of computational tools. The fractal parameters have the advantage of being scale invariant, i.e. to be independent of the magnification and resolution of the images to be investigated, making easier the comparison among different setups and experiments.

Results

The success of several commercial and/or free codes in computing the fractal parameters has been tested on well known exact models. Based on such a preliminary study, we selected the code Frac-lac in order to analyze images obtained by visualizing the angiogenetic process occurring in chick Chorio Allontoic Membranes (CAM), assumed to be paradigmatic of a realistic 2D vascular network. Among the parameters investigated, the fractal dimension Df proved to be the most robust estimator for CAM vascular networks. Moreover, only Df was able to discriminate between effective and elusive increases in vascularization after drug-induced angiogenic stimulations on CAMs.

Conclusion

The fractal dimension Df is likely to be the most promising tool for monitoring the effectiveness of anti-angiogenic therapies in various clinical contexts.  相似文献   

8.

Background:

One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nanoclay (OC).

Methods:

The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity.

Results:

Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM) remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations.

Conclusions:

The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR.Key Words: Silicone rubber, Nanoclay, Elastic Modulus, Roughness, Cell proliferation  相似文献   

9.

Background

The role of serum anti-Müllerian hormone (AMH) as predictor of in-vitro fertilization outcomes has been much debated. The aim of the present study is to investigate the practicability of combining serum AMH level with biological age as a simple screening method for counseling IVF candidates of advanced reproductive age with potential poor outcomes prior to treatment initiation.

Methods

A total of 1,538 reference patients and 116 infertile patients aged greater than or equal to 40 years enrolled in IVF/ICSI cycles were recruited in this retrospective analysis. A reference chart of the age-related distribution of serum AMH level for Asian population was first created. IVF/ICSI patients aged greater than or equal to 40 years were then divided into three groups according to the low, middle and high tertiles the serum AMH tertiles derived from the reference population of matching age. The cycle outcomes were analyzed and compared among each individual group.

Results

For reference subjects aged greater than or equal to 40 years, the serum AMH of the low, middle and high tertiles were equal or lesser than 0.48, 0.49-1.22 and equal or greater than 1.23 ng/mL respectively. IVF/ICSI patients aged greater than or equal to 40 years with AMH levels in the low tertile had the highest cycle cancellation rate (47.6%) with zero clinical pregnancy. The nadir AMH level that has achieved live birth was 0.56 ng/mL, which was equivalent to the 36.4th percentile of AMH level from the age-matched reference group. The optimum cut-off levels of AMH for the prediction of nonpregnancy and cycle cancellation were 1.05 and 0.68 ng/mL, respectively.

Conclusions

Two criteria: (1) age greater than or equal to 40 years and (2) serum AMH level in the lowest tertile (equal or lesser than 33.3rd percentile) of the matching age group, may be used as markers of futility for counseling IVF/ICSI candidates.  相似文献   

10.

Aims

We examined the importance of partial seed consumption (cotyledon loss) by rabbits in the early establishment of seedlings of cork oaks restricted to nutrient-impoverished soils.

Methods

To determine the importance of cotyledons in the growth and development of seedlings, we simulated two levels of predation [light (30 % cotyledon loss) and heavy (60 % loss) partial consumption] and two soil nutrient contents (nutrient-poor soil, nutrient-rich soil). Seedlings height, root length, dry root and shoot biomass, specific leaf mass, leaf density, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations were determined.

Results

Results indicated that effect of nutrient level on the growth of the oak seedlings was more important than that of cotyledon biomass. However, in nutrient–poor soils, cotyledon biomass played a major role in the early performance of cork oaks. Acorns grown in nutrient-rich substrate, despite having greater aerial vigor, were slower to develop a vertical root, and hence less likely to reach permanent moisture. Cotyledon loss caused a decrease in the biomass of roots and shoots when acorns were heavily consumed, and as a result experienced a reduction in net photosynthetic rate, stomatal conductance and chlorophyll concentration. Survival of seedlings was unaffected by either soil type or cotyledon loss.

Conclusions

Our results show that effects of soil type on the survival of oak seedlings were more important than those of cotyledon biomass. However, in a competitive situation, cotyledon biomass, as an indicative of growth nutrient support rather than an energy source, could be vital in a nutrient-poor environment, particularly in Mediterranean climate regions and for species with little inherent drought tolerance (as is the case of Quercus spp.), where rapid root growth is required to ensure that contact with soil moisture is maintained over the first summer.  相似文献   

11.

Aim

Our objectives were to compare effects of root charge properties on Al adsorption by the roots of rice that differed in Al-tolerance, and to examine effects of different nitrogen forms on charge properties of rice roots and Al adsorption.

Methods

Streaming potential and chemical methods were used to measure root zeta potential and investigate Al chemical forms adsorbed on the roots of rice obtained from solution culture experiments.

Results

Rice roots of the Al-sensitive variety Yangdao-6 carried greater negative charge than the Al-tolerant variety Wuyunjing-7, which meant the roots of Yangdao-6 adsorbed more exchangeable and complexed Al. When both rice varieties were grown in NH4 +-containing nutrient solutions, there were less functional groups and lower negative surface charge on their roots, which reduced Al adsorption compared to the rice grown in NO3 ? containing nutrient solutions. The decline in nutrient solution pH due to NH4 + uptake by rice roots was responsible for the reduced numbers of functional groups and the lower negative surface charge on the roots compared to the rice grown in NO3 ? containing solutions.

Conclusions

Integrated root surface charge, as expressed by zeta potential, played an important role in Al adsorption by the roots of rice with different Al-tolerance.
  相似文献   

12.
Pulmonary vascular perfusion has been shown to follow a fractal distribution down to a resolution of 0.5 cm(3) (5E11 microm(3)). We wanted to know whether this distribution continued down to tissue volumes equivalent to that of an alveolus (2E5 microm(3)). To investigate this, we used confocal microscopy to analyze the spatial distribution of 4-microm-diameter fluorescent latex particles trapped within rat lung microvessels. Particle distributions were analyzed in tissue volumes that ranged from 1.7E2 to 2.8E8 microm(3). The analysis resulted in fractal plots that consisted of two slopes. The left slope, encompassing tissue volumes less than 7E5 microm(3), had a fractal dimension of 1.50 +/- 0.03 (random distribution). The right slope, encompassing tissue volumes greater than 7E5 microm(3), had a fractal dimension of 1.29 +/- 0.04 (nonrandom distribution). The break point at 7E5 microm(3) corresponds closely to a tissue volume equivalent to that of one alveolus. We conclude that perfusion distribution is random at tissue volumes less than that of an alveolus and nonrandom at tissue volumes greater than that of an alveolus.  相似文献   

13.
Seafloor topographic complexity is ecologically important because it provides habitat structure and alters boundary-layer flow over the bottom. Despite its importance, there is little agreement on how to define and measure surface complexity. The purpose of this investigation was to utilize fractal geometry of vertical cross-section profiles to characterize the surface topography of the soft-bottom mussel bed (Mytilus edulis L.) at Bob's Cove, ME, USA. Mussels there have been shown previously to have spatially ordered fractal characteristics in the horizontal plane. Two hypotheses were tested. The first was that the bed surface is fractal over the spatial scale of 1.44-200 mm, with fractal dimension less than or equal to 1.26, the value for the Koch curve, our model for bed profiles. The second was that bed surface topography (i.e., in vertical profile) is less complex than the mussel bed spatial pattern (i.e., aerial view in the horizontal plane). Both hypotheses were supported. Cross-sections of plaster casts of the bed produced 88 surface profiles, all of which were fractal over the entire spatial scale of more two orders of magnitude employed in the analysis. Fractal dimension values (D) for individual profiles ranged from 1.031 to 1.310. Fractal dimensions of entire casts ranged up to mean (1.242+/-0.046) and median (1.251) values similar to 1.26, the theoretical value of the Koch curve. The bed surface was less complex than the bed spatial pattern because every profile had D<1.36, the smallest value previously obtained from aerial views of the bed. The investigation demonstrated for the first time that surface topography of a soft-bottom mussel bed was fractal at a spatial scale relevant to hydrodynamic processes and habitat structure important for benthic organisms. The technique of using cross-section profiles from casts of the bed surface avoided possible underestimates of fractal dimension that can result from other profiling methods reported in the literature. The results demonstrate that fractal dimension can be useful in the analysis of habitat space and water flow over any irregular seafloor surface because it incorporates the size, shape, and scale of roughness elements into a simple, numerical metric.  相似文献   

14.

Background

The main objective of the present study was to investigate chemical composition and possible cyto/genotoxic potential of several medical implant materials commonly used in total hip joint replacement.

Methods

Medical implant metal alloy (Ti6Al4V and CoCrMo) and high density polyethylene particles were analyzed by energy dispersive X-ray spectrometry while toxicological characterization was done on human lymphocytes using multi-biomarker approach.

Results

Energy dispersive X-ray spectrometry showed that none of the elements identified deviate from the chemical composition defined by appropriate ISO standard. Toxicological characterization showed that the tested materials were non-cyto/genotoxic as determined by the comet and cytokinesis-block micronucleus (CBMN) assay. Particle morphology was found (by using scanning electron and optical microscope) as flat, sharp-edged, irregularly shaped fiber-like grains with the mean particle size less than 10 µm; this corresponds to the so-called "submicron wear". The very large surface area per wear volume enables high reactivity with surrounding media and cellular elements.

Conclusions

Although orthopedic implants proved to be non-cyto/genotoxic, in tested concentration (10 μg/ml) there is a constant need for monitoring of patients that have implanted artificial hips or other joints, to minimize the risks of any unwanted health effects.

General significance

The fractal and multifractal analyses, performed in order to evaluate the degree of particle shape effect, showed that the fractal and multifractal terms are related to the "remnant" level of the particles' toxicity especially with the cell viability (trypan blue method) and total number of nucleoplasmic bridges and nuclear buds as CBMN assay parameters.  相似文献   

15.

Premise of the Study

The pygmy forest, a plant community of severely stunted conifers and ericaceous angiosperms, occurs on patches of highly acidic, nutrient‐poor soils along the coast of Northern California, USA. This system is an excellent opportunity to study the effect of severe nutrient deficiency on leaf physiology in a naturally‐occurring ecosystem. In this study, we seek to understand the physiological mechanisms stunting the plants' growth and their implications for whole plant function.

Methods

We measured 14 traits pertaining to leaf photosynthetic function or physical structure on seven species. Samples were taken from the pygmy forest community and from conspecifics growing on higher‐nutrient soils, where trees may grow over 30 m tall.

Key Results

Pygmy plants of most species maintained similar area‐based photosynthetic and stomatal conductance rates to conspecific controls, but had lower specific leaf area (leaf area divided by dry weight), lower percent nitrogen, and less leaf area relative to xylem growth. Sequoia sempervirens, a species rare in the pygmy forest, had a categorically different response from the more common plants and had remarkably low photosynthetic rates.

Conclusions

Pygmy plants were not stunted by low photosynthetic rates on a leaf‐area basis; instead, several species had restricted whole‐plant photosynthesis due to low leaf area production. Pygmy plants of all species showed signs of greater carbon investment in their leaves and higher production of nonphotosynthetic leaf tissue, further contributing to slow growth rates.  相似文献   

16.
Zhou J  Dong BC  Alpert P  Li HL  Zhang MX  Lei GC  Yu FH 《Annals of botany》2012,109(4):813-818

Background and Aims

Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity.

Methods

Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken.

Key Results

Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio.

Conclusions

Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.  相似文献   

17.

Background  

Recent theories have attempted to derive the value of the exponent α in the allometric formula for scaling of basal metabolic rate from the properties of distribution network models for arteries and capillaries. It has recently been stated that a basic theorem relating the sum of nutrient currents to the specific nutrient uptake rate, together with a relationship claimed to be required in order to match nutrient supply to nutrient demand in 3-dimensional outward-directed networks, leads to Kleiber's law (b = 3/4).  相似文献   

18.
19.

Aims

The purpose of this study was to test the hypotheses that soil nutrient patchiness can differentially benefit the decomposition of root and shoot litters and that this facilitation depends on plant genotypes.

Methods

We grew 15 cultivars (i.e. genotypes) of winter wheat (Triticum aestivum L.) under uniform and patchy soil nutrients, and contrasted their biomass and the subsequent mass, carbon (C) and nitrogen (N) dynamics of their root and shoot litters.

Results

Under equal amounts of nutrients, patchy distribution increased root biomass and had no effects on shoot biomass and C:N ratios of roots and shoots. Roots and shoots decomposed more rapidly in patchy nutrients than in uniform nutrients, and reductions in root and shoot C:N ratios with decomposition were greater in patchy nutrients than uniform nutrients. Soil nutrient patchiness facilitated shoot decomposition more than root decomposition. The changes in C:N ratios with decomposition were correlated with initial C:N ratios of litter, regardless of roots or shoots. Litter potential yield, quality and decomposition were also affected by T. aestivum cultivars and their interactions with nutrient patchiness.

Conclusions

Soil nutrient patchiness can enhance C and N cycling and this effect depends strongly on genotypes of T. aestivum. Soil nutrient heterogeneity in plant communities also can enhance diversity in litter decomposition and associated biochemical and biological dynamics in the soil.  相似文献   

20.

Background

Programming a mechanical ventilator with a biologically variable or fractal breathing pattern (an example of 1/f noise) improves gas exchange and respiratory mechanics. Here we show that fractal ventilation increases respiratory sinus arrhythmia (RSA) – a mechanism known to improve ventilation/perfusion matching.

Methods

Pigs were anaesthetised with propofol/ketamine, paralysed with doxacurium, and ventilated in either control mode (CV) or in fractal mode (FV) at baseline and then following infusion of oleic acid to result in lung injury.

Results

Mean RSA and mean positive RSA were nearly double with FV, both at baseline and following oleic acid. At baseline, mean RSA = 18.6 msec with CV and 36.8 msec with FV (n = 10; p = 0.043); post oleic acid, mean RSA = 11.1 msec with CV and 21.8 msec with FV (n = 9, p = 0.028); at baseline, mean positive RSA = 20.8 msec with CV and 38.1 msec with FV (p = 0.047); post oleic acid, mean positive RSA = 13.2 msec with CV and 24.4 msec with FV (p = 0.026). Heart rate variability was also greater with FV. At baseline the coefficient of variation for heart rate was 2.2% during CV and 4.0% during FV. Following oleic acid the variation was 2.1 vs. 5.6% respectively.

Conclusion

These findings suggest FV enhances physiological entrainment between respiratory, brain stem and cardiac nonlinear oscillators, further supporting the concept that RSA itself reflects cardiorespiratory interaction. In addition, these results provide another mechanism whereby FV may be superior to conventional CV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号