首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of cytochrome P450 genes in silkworm genome (Bombyx mori)   总被引:5,自引:0,他引:5  
Cytochrome P450 monooxygenases (P450) are im-portant metabolic enzymes involved in the metabolism not only of a wide range of endogenous compounds such as fatty acids, steroids, hormones or vitamins, but also of exogenous substrates such as drugs, chemicals including environmental pollutants, such carcinogens as polycyclic aromatic hydrocarbons, and pesticides[1]. P450s are found virtually in all aerobic organisms, including organisms as diverse as in insects, plants, mammals, birds and bacter…  相似文献   

2.
3.
4.
5.
Cytochrome P450 mono‐oxygenases (P450) are versatile enzymes which play essential roles in C‐source assimilation, secondary metabolism, and in degradations of endo‐ and exogenous xenobiotics. In humans, several P450 isoforms constitute the largest part of phase I metabolizing enzymes and catalyze oxidation reactions which convert lipophilic xenobiotics, including drugs, to more water soluble species. Recombinant human P450s and microorganisms are applied in the pharmaceutical industry for the synthesis of drug metabolites for pharmacokinetics and toxicity studies. Compared to the membrane‐bound eukaryotic P450s, prokaryotic ones exhibit some advantageous features, such as high stability and generally easier heterologous expression. Here, we describe a novel P450 from Streptomyces platensis DSM 40041 classified as CYP107L that efficiently converts several commercial drugs of various size and properties. This P450 was identified by screening of actinobacterial strains for amodiaquine and ritonavir metabolizing activities, followed by genome sequencing and expression of the annotated S. platensis P450s in Escherichia coli. Performance of CYP107L in biotransformations of amodiaquine, ritonavir, amitriptyline, and thioridazine resembles activities of the main human metabolizing P450s, namely CYPs 3A4, 2C8, 2C19, and 2D6. For application in the pharmaceutical industry, an E. coli whole‐cell biocatalyst expressing CYP107L was developed and evaluated for preparative amodiaquine metabolite production.  相似文献   

6.
Tijet N  Helvig C  Feyereisen R 《Gene》2001,262(1-2):189-198
The cytochrome P450 gene superfamily is represented by 90 sequences in the Drosophila melanogaster genome. Of these 90 P450 sequences, 83 code for apparently functional genes whereas seven are apparent pseudogenes. More than half of the genes belong to only two families, CYP4 and CYP6. The CYP6 family is insect specific whereas the CYP4 family includes sequences from vertebrates. There are eight genes coding for mitochondrial P450s as deduced from their homology to CYP12A1 from the house fly. The genetic map of the distribution of D. melanogaster P450 genes shows (a) the absence of P450 genes on the chromosome 4 and Y, (b) more than half of the P450 genes are found on chromosome 2, and (c) the largest cluster contains nine genes. Sequence alignments were used to draw phylogenetic trees and to analyze the intron-exon organization of each functional P450 gene. Only five P450 genes are intronless. We found 57 unique intron positions, of which 23 were phase zero, 19 were phase one and 15 were phase two. There was a relatively good correlation between intron conservation and phylogenetic relationship between members of the P450 subfamilies. Although the function of many P450 proteins from vertebrates, fungi, plants and bacteria is known, only a single P450 from D. melanogaster, CYP6A2, has been functionally characterized. Gene organization appears to be a useful tool in the study of the regulation, the physiological role and the function of these P450s.  相似文献   

7.
Based on the advances in the silkworm genome project, a new genome-wide analysis of cytochrome P450 genes was performed, focusing mainly on gene duplication. All four CYP9A subfamily members from the silkworm, Bombyx mori, were cloned by RT-PCR and designated CYP9A19CYP9A22 by the P450 Nomenclature Committee. They each contain an open reading frame of 1,593 bp in length and encode a putative polypeptide of 531 amino acids. Both nucleic acid and amino acid sequences share very high identities with one another. The typical motifs of insect cytochrome P450, including the heme-binding region, helix-C, helix-I, helix-K, and PERF, show high sequence conservation among the multiple proteins. Alignment with their cDNA sequences revealed that these paralogues share identical gene structures, each comprising ten exons and nine introns of variable sizes. The locations of their introns (all nine introns follow the GT–AG rule) are absolutely conserved. CYP9A19, CYP9A20, and CYP9A21 form a tandem cluster on chromosome 17, whereas CYP9A22 is separated from the cluster by four tandem alcohol-dehydrogenase-like genes. Their phylogenetic relationships and structural comparisons indicated that these paralogues arose as the results of gene duplication events. RT-PCR detected their mRNAs in different “first line of defense” tissues, as well as in several other organs, suggesting diverse functions. Tissue-selective expression also indicates their functional divergence. The identified CYP9A genes have not yet been found outside the Lepidoptera, and are probably unique to the Lepidoptera. They show high sequence and structural similarities to each other, indicating that the Lepidoptera-specific P450s may be of functional importance. This analysis constitutes the first report of the clustering, spatial organization, and functional divergence of P450 in the silkworm.  相似文献   

8.
9.
We have isolated multiple cDNAs encoding cytochromes P450 (P450s) from Arabidopsis thaliana employing a PCR strategy. Degenerate oligonucleotide primers were designed from amino acid sequences conserved between two plant P450s, CYP71A1 and CYP73A2, including the heme-binding site and the proline-rich motif found in the N-terminal region, and 11 putative P450 fragments were amplified from first-strand cDNA from 7-day-old Arabidopsis as a template. With these PCR fragments as hybridization probes, 13 full-length and 3 partial cDNAs encoding different P450s have been isolated from an Arabidopsis cDNA library. These P450s have been assigned to either one of the established subfamilies: CYP71B, CYP73A, and CYP83A; or novel subfamilies: CYP76C, CYP83B, and CYP91A. The primary protein structures predicted from the cDNA sequences revealed that the regions around both the heme-binding site and the proline-rich motif were highly conserved among all these P450s. The N-terminal structures of the predicted P450 proteins suggested that these Arabidopsis P450s were located at the endoplasmic reticulum membrane. The loci of four P450 genes were determined by RFLP mapping. One of the clones, CYP71B2, was located at a position very close to the ga4 and gai mutations. RNA blot analysis showed expression patterns unique to each of the P450s in terms of tissue specificity and responsiveness to wounding and light/dark cycle, implicating involvement of these P450s in diverse metabolic processes.  相似文献   

10.
In vertebrates, cytochrome P450s of the CYP2 and CYP3 families play a dominant role in drug metabolism, while in insects members of the CYP6 and CYP28 families have been implicated in metabolism of insecticides and toxic natural plant compounds. A degenerate 3 RACE strategy resulted in the identification of fifteen novel P450s from an alkaloid-resistant species of Drosophila. The strong (17.4-fold) and highly specific induction of a single gene (CYP4D10) by the toxic isoquinoline alkaloids of a commonly utilized host-plant (saguaro cactus) provides the first indication that members of the CYP4 family in insects may play an important role in the maintenance of specific insect-host plant relationships. Strong barbiturate inducibility of CYP4D10 and two other D. mettleri P450 sequences of the CYP4 family was also observed, suggesting a pattern of xenobiotic responsiveness more similar to those of several vertebrate drug-metabolizing enzymes than to putative vertebrate CYP4 homologs. Received: 14 August 1997 / Accepted: 24 March 1998  相似文献   

11.
Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries.  相似文献   

12.
Across insect genomes, the size of the cytochrome P450 monooxygenase (CYP) gene superfamily varies widely. CYPome size variation has been attributed to reciprocal adaptive radiations in insect detoxification genes in response to plant biosynthetic gene radiations driven by co‐evolution between herbivores and their chemically defended hostplants. Alternatively, variation in CYPome size may be due to random “birth‐and‐death” processes, whereby exponential increase via gene duplications is limited by random decay via gene death or transition via divergence. We examined CYPome diversification in the genomes of seven Lepidoptera species varying in host breadth from monophagous (Bombyx mori) to highly polyphagous (Amyelois transitella). CYPome size largely reflects the size of Clan 3, the clan associated with xenobiotic detoxification, and to some extent phylogenetic age. Consistently across genomes, families CYP6, CYP9 and CYP321 are most diverse and CYP6AB, CYP6AE, CYP6B, CYP9A and CYP9G are most diverse among subfamilies. Higher gene number in subfamilies is due to duplications occurring primarily after speciation and specialization (“P450 blooms”), and the genes are arranged in clusters, indicative of active duplicating loci. In the parsnip webworm, Depressaria pastinacella, gene expression levels in large subfamilies are high relative to smaller subfamilies. Functional and phylogenetic data suggest a correlation between highly dynamic loci (reflective of extensive gene duplication, functionalization and in some cases loss) and the ability of enzymes encoded by these genes to metabolize hostplant defences, consistent with an adaptive, nonrandom process driven by ecological interactions.  相似文献   

13.
Cytochrome P450 (CYP) enzymes belong to a superfamily of monooxygenases which are phase I enzymes responsible for the first pass metabolism of about 90% of drugs in animals. However, these enzymes are often polymorphic and metabolism of the same drug in different species or different individuals is influenced by genetic and non-genetic factors. Bactrian camels are capable of survival in harsh living environments, being able to consume diets that are often toxic to other mammals and can tolerate extreme water and food deprivation. The aim of this study was to investigate whether the Bactrian camel’s special metabolic pathways and unique detoxification capabilities are attributable to particularities of the CYP gene family. The Bactrian camel’s whole genome sequencing data were systemically analyzed and annotated, and then, CYP gene family was searched from the whole protein database and compared with CYP gene families of cattle, horse, chicken, and human. The total of 63 CYP gene copies were found in Bactrian camel’s whole genome and were classified into 17 families and 38 subfamilies. Among them, 9 multi-gene families were found, and CYP2, CYP3, and CPY4 have 27, 6, and 7 subfamilies, accounting for 43, 10, and 11% in camel CYP gene, respectively. In comparison with cattle, chicken, horse, and human, the distribution of CYP gene subfamilies in camel is different, with more CYP2J and CYP3A copies in the Bactrian camel, which may contribute to the Bactrian camel’s specific biological characteristics and metabolic pathways. Comparing to the cow, horse, chicken, and human CYP genes, the distribution of CYP gene subfamilies is distinct in the Bactrian camel. The higher copy number of CYP2J gene and CYP3A gene in Bactrian camel may be the important factors contributing to the distinct biological characteristics and metabolic pathways of Bactrian camels for adaptation to the harsh environments.  相似文献   

14.
We explored the molecular diversity and functional capabilities of cytochrome P450 monooxygenases (P450s) from the brown-rot basidiomycete Postia placenta. Using bioinformatic and experimental data, we found 250 genes of P450s in the whole genome, including 60 putative allelic variants. Phylogenetic analysis revealed the presence of 42 families, including 18 novel families. Comparative phylogenetic analysis of P450s from P. placenta and the white-rot basidiomycete Phanerochaete chrysosporium suggested that vigorous gene duplication and molecular evolution occurred after speciation of basidiomycetes. Among the 250 gene models, 184 were isolated as full-length cDNA and transformed into Saccharomyces cerevisiae to construct a functional library in which recombinant P450s were co-expressed with yeast NADPH-P450 oxidoreductase. Using this library, the catalytic potentials of P450s against a wide variety of compounds were investigated. A functionomic survey allowed the discovery of novel catalytic properties of P. placenta P450s. The phylogenetic diversity of the CYP53 family in P. placenta was clear, and CYP53D2 is capable of converting stilbene derivatives. This is the first report of this peculiar function of the CYP53 family. Our increased understanding of the molecular and functional diversity of P450s in this fungus will facilitate comprehension of metabolic diversity in basidiomycetes and has future biotechnology applications.  相似文献   

15.
Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance.  相似文献   

16.
The fugu (pufferfish) genome has been sequenced, and a second genome assembly was released 17 May 2002. Exhaustive searches were made to identify all P450 genes and pseudogenes from the earlier release of 26 October 2001. P450 genes assembled as completely as possible from these data were used to do additional searches of the newer assembly and all P450 genes and pseudogenes in the available fugu sequence data have been identified, compared to human P450s, and assigned names. There are 54 P450 genes in fugu and 1 nearly intact pseudogene (CYP3A50P). CYP1A is missing much of its N-terminal half; however, 45 P450 genes are completely assembled. Eight others are lacking only one or two exons or less. CYP2X4 is known only from an EST. This may be a 55th P450 gene if it represents an accurate sequence. In addition to 2X4, there are 16 other pseudogene fragments or small pieces of P450 genes. At the P450 family level, 17 of 18 mammalian families are found in fugu. CYP39 is the only CYP family missing and it is not seen in any other fish sequence data either. The CYP2 family shows the largest degree of divergence. In the CYP2 family, only CYP2R1 and CYP2U1 are conserved as recognizable subfamilies across species. Intron-exon boundaries are largely preserved across 420 million years of evolution.  相似文献   

17.

Background  

Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search.  相似文献   

18.
Cytochromes P450 (CYPs or P450s) contain a highly conserved threonine residue in the active site, which is referred to as Thr302 in the amino acid sequence of CYP2B4. Extensive biochemical and crystallographic studies have established that this Thr302 plays a critical role in activating molecular oxygen to generate Compound I, a putative iron(IV)-oxo porphyrin cation radical, that carries out the preliminary oxygenation of CYP substrates. Because of its proximity to the center of the P450 active site, this Thr302 is susceptible to mechanism-based inactivation under certain conditions. In this article, we review recent studies on the mechanism-based inactivation of three mammalian P450s in the 2B family, CYP2B1 (rat), 2B4 (rabbit) and 2B6 (human) by tert-butylphenylacetylene (tBPA). These studies showed that tBPA is a potent mechanism-based inactivator of CYP2B1, 2B4 and 2B6 with high kinact/KI ratios (0.23–2.3 min−1 μM−1) and low partition ratios (0–5). Furthermore, mechanistic studies revealed that tBPA inactivates these three CYP2B enzymes through the formation of a single ester adduct with the Thr302 in the active site. These inhibitory properties of tBPA allowed the preparation of a modified CYP2B4 where the Thr302 was covalently and stoichiometrically labeled by a reactive intermediate of tBPA in quantities large enough to permit spectroscopic and crystallographic studies of the consequences of covalent modification of Thr302. Molecular modeling studies revealed a unique binding mode of tBPA in the active site that may shed light on the potency of this inhibition. The results from these studies may serve as a basis for designing more specific and potent inhibitors for P450s by targeting this highly conserved threonine residue which is present in the active sites of most mammalian P450s.  相似文献   

19.
20.
The cytochrome P450 gene superfamily is represented by 80 genes in animal genomes and perhaps more than 300 genes in plant genomes. We analyzed about half of all Arabidopsis P450 genes, a very large dataset of truly paralogous genes. Sequence alignments were used to draw phylogenetic trees, and this information was compared with the intron-exon organization of each P450 gene. We found 60 unique intron positions, of which 37 were phase 0 introns. Our results confirm the polyphyletic origin of plant P450 genes. One group of these genes, the A-type P450s, are plant specific and characterized by a simple organization, with one highly conserved intron. Closely related A-type P450 genes are often clustered in the genome with as many as a dozen genes (e.g., of the CYP71 subfamily) on a short stretch of chromosome. The other P450 genes (non-A-type) form several distinct clades and are characterized by numerous introns. One such clade contains the two CYP51 genes, which are thought to encode obtusifoliol 14a demethylase. The two CYP51 genes have a single intron that is not shared with CYP51 genes from vertebrates or fungi, or with any other Arabidopsis P450 gene. Only a few of the Arabidopsis P450 genes are intronless (e.g., the CYP710A and CYP96A subfamilies). There was a relatively good correlation between intron conservation and phylogenetic relationships between members of the P450 subfamilies. Gene organization appears to be a useful tool in establishing the evolutionary relatedness of P450 genes, which may help in predictions of P450 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号