首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The availability of hundreds of bacterial genomes allowed a comparative genomic study of the Type VI Secretion System (T6SS), recently discovered as being involved in pathogenesis. By combining comparative and phylogenetic approaches using more than 500 prokaryotic genomes, we characterized the global T6SS genetic structure in terms of conservation, evolution and genomic organization.

Results

This genome wide analysis allowed the identification of a set of 13 proteins constituting the T6SS protein core and a set of conserved accessory proteins. 176 T6SS loci (encompassing 92 different bacteria) were identified and their comparison revealed that T6SS-encoded genes have a specific conserved genetic organization. Phylogenetic reconstruction based on the core genes showed that lateral transfer of the T6SS is probably its major way of dissemination among pathogenic and non-pathogenic bacteria. Furthermore, the sequence analysis of the VgrG proteins, proposed to be exported in a T6SS-dependent way, confirmed that some C-terminal regions possess domains showing similarities with adhesins or proteins with enzymatic functions.

Conclusion

The core of T6SS is composed of 13 proteins, conserved in both pathogenic and non-pathogenic bacteria. Subclasses of T6SS differ in regulatory and accessory protein content suggesting that T6SS has evolved to adapt to various microenvironments and specialized functions. Based on these results, new functional hypotheses concerning the assembly and function of T6SS proteins are proposed.  相似文献   

2.
MicroRNAs (miRNAs) are non-coding small RNAs of ~22 nt that regulate the gene expression by base pairing with target mRNAs, leading to mRNA cleavage or translational repression. It is currently estimated that miRNAs account for ~1% of predicted genes in higher eukaryotic genomes and that up to 30% of genes might be regulated by miRNAs. However, only very few miRNAs have been functionally characterized and the general functions of miRNAs are not globally studied. In this study, we systematically analyzed the expression patterns of miRNA targets using several public microarray profiles. We found that the expression levels of miRNA targets are lower in all mouse and Drosophila tissues than in the embryos. We also found miRNAs more preferentially target ubiquitously expressed genes than tissue-specifically expressed genes. These results support the current suggestion that miRNAs are likely to be largely involved in embryo development and maintaining of tissue identity.  相似文献   

3.
In cell senescence, cultured cells cease proliferating and acquire aberrant gene expression patterns. MicroRNAs (miRNAs) modulate gene expression through translational repression or mRNA degradation and have been implicated in senescence. We used deep sequencing to carry out a comprehensive survey of miRNA expression and involvement in cell senescence. Informatic analysis of small RNA sequence datasets from young and senescent IMR90 human fibroblasts identifies many miRNAs that are regulated (either up or down) with cell senescence. Comparison with mRNA expression profiles reveals potential mRNA targets of these senescence-regulated miRNAs. The target mRNAs are enriched for genes involved in biological processes associated with cell senescence. This result greatly extends existing information on the role of miRNAs in cell senescence and is consistent with miRNAs having a causal role in the process.  相似文献   

4.
5.
Comparison of microRNA expression identified tissues present in the last common ancestor of Bilaterians and put evolution of microRNAs in the context of tissue evolution.  相似文献   

6.
7.
8.
9.
Journal of Plant Biochemistry and Biotechnology - MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs with important roles in plant growth, development, and metabolic processes....  相似文献   

10.
11.
Cdc14 phosphatase regulates multiple events during anaphase and is essential for mitotic exit in budding yeast. Cdc14 is regulated in both a spatial and temporal manner. It is sequestered in the nucleolus for most of the cell cycle by the nucleolar protein Net1 and is released into the nucleus and cytoplasm during anaphase. To identify novel binding partners of Cdc14, we used affinity purification of Cdc14 and mass spectrometric analysis of interacting proteins from strains in which Cdc14 localization or catalytic activity was altered. To alter Cdc14 localization, we used a strain deleted for NET1, which causes full release of Cdc14 from the nucleolus. To alter Cdc14 activity, we generated mutations in the active site of Cdc14 (C283S or D253A), which allow binding of substrates, but not dephosphorylation, by Cdc14. Using this strategy, we identified new interactors of Cdc14, including multiple proteins involved in mitotic events. A subset of these proteins displayed increased affinity for catalytically inactive mutants of Cdc14 compared with the wild-type version, suggesting they are likely substrates of Cdc14. We have also shown that several of the novel Cdc14-interacting proteins, including Kar9 (a protein that orients the mitotic spindle) and Bni1 and Bnr1 (formins that nucleate actin cables and may be important for actomyosin ring contraction) are specifically dephosphorylated by Cdc14 in vitro and in vivo. Our findings suggest the dephosphorylation of the formins may be important for their observed localization change during exit from mitosis and indicate that Cdc14 targets proteins involved in wide-ranging mitotic events.  相似文献   

12.
Zhang P  Ma Y  Wang F  Yang J  Liu Z  Peng J  Qin H 《Molecular biology reports》2012,39(2):1471-1478
Accumulating evidence has demonstrated that miRNAs play important roles in the occurrence and development of colorectal cancer (CRC). However, whether miRNAs are associated with the metastasis of CRC remains largely unexplored. The aim of the current study is to profile miRNAs in different CRC metastatic cell lines to identify the biomarkers in CRC metastasis. Gene and miRNA expression profiling was performed to analyze the global expression of mRNAs and miRNAs in the four human CRC cell lines (LoVo, SW480, HT29 and Caco-2) with different potential of metastasis. Expression patterns of mRNAs and miRNAs were altered in different CRC cell lines. By developing an integrated bioinformatics analysis of gene and miRNA expression patterns, hsa-let-7i was identified to show the highest degree in the microRNA-GO-network and microRNA-Gene-network. The expression level of hsa-let-7i was further validated by qRT-PCR in CRC cells. In addition, the targets of hsa-let-7i were predicted by two programs TargetScan and PicTar, and target genes were validated by expression profiling in the most epresentative LoVo and Caco-2 cell lines. Eight genes including TRIM41, SOX13, SLC25A4, SEMA4F, RPUSD2, PLEKHG6, CCND2, and BTBD3 were identified as hsa-let-7i targets. Our data showed the power of comprehensive gene and miRNA expression profiling and the application of bioinformatics tools in the identification of novel biomarkers in CRC metastasis.  相似文献   

13.
Kidney fibrosis is the hallmark of most types of progressive kidney disease, including the genetic disorder Alport's syndrome. We undertook gene expression analysis in Alport's syndrome mouse kidneys using microchip arrays to characterize the development of fibrosis. In addition to matrix and matrix-remodeling genes, consistent with interstitial fibrosis, macrophage-related genes show elevated expression levels in Alport's syndrome kidneys. Immunohistochemical analysis of kidney sections illustrated that macrophages as well as myofibroblasts accumulate in the tubular interstitium. Deletion of alpha(1) integrin results in decreased accumulation of both myofibroblasts and macrophages in the tubular interstitium in Alport's syndrome mice and delays disease progression. Transforming growth factor beta antagonism, although reducing interstitial fibrosis, does not limit macrophage accumulation in the tubular interstitium and disease progression. In this study, we identified previously overlooked inflammatory events that occur in the tubulointerstitial region. We propose that in addition to the previously suggested role for the alpha(1)beta(1) integrin in mesangial expansion and abnormal laminin deposition, this integrin may be critical for monocyte accumulation that, in turn, may lead directly to renal failure. Our gene expression and immunohistochemical data indicate that macrophage accumulation is dependent on alpha(1) integrin expression on the macrophage cell surface and that anti-alpha(1) integrin strategies may be employed as therapeutics in the treatment of chronic inflammatory and fibrotic diseases.  相似文献   

14.
MicroRNAs (miRNAs) are small RNAs that modulate gene expression by binding target mRNAs. The hundreds of miRNAs expressed in the brain are critical for synaptic development and plasticity. Drugs of abuse cause lasting changes in the limbic regions of the brain that process reward, and addiction is viewed as a form of aberrant neuroplasticity. Using next-generation sequencing, we cataloged miRNA expression in the nucleus accumbens and at striatal synapses in control and chronically cocaine-treated mice. We identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several predicted synaptic target genes. The miR-8 family, known for its roles in cancer, is highly enriched and cocaine regulated at striatal synapses, where its members may affect expression of cell adhesion molecules. Synaptically enriched cocaine-regulated miRNAs may contribute to long-lasting drug-induced plasticity through fine-tuning regulatory pathways that modulate the actin cytoskeleton, neurotransmitter metabolism, and peptide hormone processing.  相似文献   

15.
Expression levels of mRNAs are among other factors regulated by microRNAs. A particular microRNA can bind specifically to several target mRNAs and lead to their degradation. Expression levels of both, mRNAs and microRNAs, can be obtained by microarray experiments. In order to increase the power of detecting microRNAs that are differentially expressed between two different groups of samples, we incorporate expression levels of their related target gene sets. Group effects are determined individually for each microRNA, and by enrichment tests and global tests for target gene sets. The resulting lists of p-values from individual and set-wise testing are combined by means of meta analysis. We propose a new approach to connect microRNA-wise and gene set-wise information by means of p-value combination as often used in meta-analysis. In this context, we evaluate the usefulness of different approaches of gene set tests. In a simulation study we reveal that our combination approach is more powerful than microRNA-wise testing alone. Furthermore, we show that combining microRNA-wise results with 'competitive' gene set tests maintains a pre-specified false discovery rate. In contrast, a combination with 'self-contained' gene set tests can harm the false discovery rate, particularly when gene sets are not disjunct.  相似文献   

16.
Global analysis of gene expression in yeast   总被引:8,自引:0,他引:8  
  相似文献   

17.
MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar > 150-fold), miR-7 being the most abundant. A similarly high ratio for miR-7 was observed in human islets. The ratio islet/acinar for miR-375, a previously described islet miRNA, was <10 and is 2.5× more abundant in the islets than miR-7. Therefore, we conclude that miR-7 is the most abundant endocrine miRNA in islets while miR-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号