首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K C Robbins  Y Tanaka 《Biochemistry》1986,25(12):3603-3611
The preparation of a new class of covalent hybrid plasminogen activators containing the fibrin-binding domains of human plasmin(ogen) and the catalytic active center of human urokinase will be described. Hybridization of the sulfhydryl form of the NH2-terminal plasmin-derived heavy (A) chain (PlnA) with the sulfhydryl form of the COOH-terminal urokinase-derived active heavy (B) chain (u-PAB) was carried out; a covalent PlnA-u-PAB hybrid plasminogen activator was prepared. The sulfhydryl form of PlnA (PlnA(SH)2) was isolated from reduced Lys-2-plasmin by L-lysine-substituted Sepharose column chromatography. For the isolation of the sulfhydryl form of u-PAB (u-PAB(SH], high molecular weight urokinase was adsorbed onto a benzamidine-Sepharose column and reduced with 100 mM 2-mercaptoethanol on the column. The urokinase NH2-terminal light (A) chain was washed off the column, and the u-PAB(SH) chain was eluted from the column. The specific activity of the isolated u-PAB(SH) chain was determined to be 242 000 IU/mg of protein. The PlnA(SH)2 and u-PAB(SH) chains were mixed at a molar ratio of PlnA(SH)2 to u-PAB(SH) of 3:2; the reducing agents were then removed by gel filtration. The hybridization (reoxidation) reaction was allowed to proceed for 48 h at 4 degrees C. The covalent hybrid activator, in 40% yield, was purified from the reaction mixture to homogeneity, by a sequential affinity chromatography method with L-lysine-substituted Sepharose followed by anti-low molecular weight urokinase IgG-Sepharose, and then gel filtration through Sephadex G-150.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Thrombin converts single-chain urokinase-type plasminogen activator (scu-PA) to an inactive two-chain derivative (thrombin-derived tcu-PA) by hydrolysis of the Arg-156--Phe-157 peptide bond. In the present study, we show that inactive thrombin-derived tcu-PA (specific activity 1000 IU/mg) can be converted with plasmin to active two-chain urokinase-type plasminogen activator (specific activity 43,000 IU/mg) by hydrolysis of the Lys-158--Ile-159 peptide bond. This conversion follows Michaelis-Menten kinetics with a Michaelis constant Km of 37 microM and a catalytic rate constant k2 of 0.013 s-1. The catalytic efficiency (k2/Km) for the activation of thrombin-derived tcu-PA by plasmin is about 500-fold lower than that for the conversion of intact scu-PA to tcu-PA. tcu-PA, generated by plasmin treatment of thrombin-derived tcu-PA, has similar properties to tcu-PA obtained by digestion of intact scu-PA with plasmin (plasmin-derived tcu-PA); its plasminogen activating potential and fibrinolytic activity in an in vitro plasma clot lysis system appear to be unaltered. These observations confirm that the structure of the NH2-terminal region of the B chain of u-PA is an important determinant for its enzymatic activity, whereas that of the COOH-terminal region of the A chain is not.  相似文献   

3.
4.
Tissue-plasminogen activator (t-PA) and plasmin both decrease platelet aggregation, which may contribute to thrombolysis and tissue salvage. Since neutrophils may contribute to reperfusion injury, we examined the effects of t-PA and plasmin on human neutrophil function. t-PA (1 to 100 micrograms/ml) decreased f-MLP-induced chemotaxis and ionophore A23187-induced superoxide and LTB4 release in isolated neutrophils, and these effects were not blocked by the plasmin-inhibitor epsilon-aminocaproic acid (epsilon-ACA). On the other hand, plasmin (0.05 to 0.5 units/ml) also decreased these neutrophil functions but its effects were blocked in the presence of epsilon-ACA. Thus, while both t-PA and plasmin decrease neutrophil functions, effects of t-PA are independent of plasmin generation. Cumulative effects of t-PA and plasmin on neutrophil functions may relate to the overall efficacy of t-PA in thrombotic disorders.  相似文献   

5.
6.
The activity of tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) is stimulated by heparin. Heparin binds tightly to t-PA, u-PA, and plasminogen and decreases the usual stimulatory effect of fibrin on t-PA activity. In the present study we have found that low molecular weight heparin (LMW-heparin) preparations obtained by nitrous acid depolymerization or heparinase treatment of standard heparin have different properties with respect to their interaction with the fibrinolytic system. LMW-heparin prepared by either method does not stimulate plasmin formation by t-PA. However, these preparations of heparin still efficiently accelerate the inhibition of thrombin by antithrombin III. Binding data show that LMW-heparin does not bind t-PA and Glu-plasminogen and only binds very weakly to Lys-plasminogen. These results illustrate that it is possible to selectively destroy the fibrinolytic stimulating properties of heparin while leaving the classical anticoagulant characteristics intact.  相似文献   

7.
At least two forms of plasminogen activators which crossreacted with antiserum against tissue plasminogen activator (tPA) have been found in human small intestine homogenates. One of these activities has very slow mobility on Sephadex G-200 and is presumably a degraded form of tPA. The other moved very fast and was dispersed on gel filtration matrices, and probably represents aggregates of tPA with some other materials. Whereas 1 M NaCl, 1% Triton X-100 or 1 M potassium thiocyanate was unable to break up these aggregates, the high molecular weight components co-migrating with tPA could be separated from tPA by 4 M guanidine-HCl.  相似文献   

8.
Recent data from several studies have suggested that the non-protease domains in tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) determine their biological specificities, including binding to fibrin clots and survival in the circulatory system (Van Zonneveld, A.-J., Veerman, H., and Pannekoek, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 4670-4674; Rijken, D. C., and Emeis, J. J. (1986) Biochem. J. 238, 643-646). Structural manipulations (e.g. deletions, additions, or substitutions) in these domains can thus be utilized to maximize the desired biological effects. Using recombinant DNA technology, we constructed a number of hybrid molecules from the t-PA and u-PA genes. In hybrid A, the epidermal growth factor and finger domains of t-PA (residues 1-91) were replaced by the epidermal growth factor and kringle of u-PA (residues 1-131). In hybrids B and C, the u-PA kringle (residues 50-131) was inserted either before (residue 92) or after (residue 261) the double-kringle region of t-PA. All these hybrid PAs containing three kringles were expressed in mouse fibroblast cells (C-127). The hybrid proteins were synthesized in predominantly a single-chain form with molecular weights of 70,000-80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were enzymatically active as assayed by the fibrin-agar plate method. In vitro studies on the binding of hybrid PAs to fibrin showed that hybrid B, like t-PA, possesses affinity toward fibrin, while hybrid A shows lower binding. This suggests that the finger domain, which is not present in hybrid A, plays a role in conferring fibrin affinity to the hybrid PAs. The enzymatic activities of the hybrids were compared with that of recombinant t-PA (rt-PA) expressed in the same vector/host system and found to be similar in activity toward a chromogenic peptide substrate. In addition, plasminogen activation with all the hybrid-PAs, as with rt-PA, was stimulated by fibrin, with the order of activity being rt-PA greater than or equal to hybrid B greater than hybrid C greater than hybrid A. This study shows the feasibility of shuffling functional domain(s) of known specificity in plasminogen activators which may lead to the design of a superior thrombolytic agent.  相似文献   

9.
10.
R Machovich  W G Owen 《Enzyme》1988,40(2-3):109-112
A component extracted from endothelium and partially purified has been found to have a capacity to enhance the rate of plasminogen activation by tissue-type plasminogen activator. The mechanism of action of this cofactor differs from that of others, such as fibrin.  相似文献   

11.
12.
13.
A procedure was developed for the purification of a plasminogen activator from human uterine tissue. It involves six consecutive steps: (1) extraction of the plasminogen activator from delipidated uterine tissue with 0.3 M potassium acetate buffer, pH 4.2; (2) ammonium sulphate precipitation; (3) zinc chelate-agarose chromatography; (4) n-butyl-agarose chromatography; (5) concanavalin A-agarose chromatography; and (6) gel filtration on Sephadex G-150. The specific activity of the final plasminogen activator preparation was increased by a factor 4500 as compared with the crude extract. The purified plasminogen activator showed a strong tendency to adsorb to surfaces. This could be effectively prevented by Tween-80. The molecular weight of the plasminogen activator was 64 000 as estimated by gel filtration in 1.0 M NaCl and 69 000 as estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The plasminogen activator consisted of two chains (molecular weights 31 000 and 38 000) connected by disulphide bridges. The smallest chain contained the serine residue of the active site as deduced from the incorporation of the tritium label of [3H]diisopropylphosphofluoridate.  相似文献   

14.
Tumor-promoting phorbol esters and histamine induce tissue plasminogen activator (tPA) release from human endothelial cells in a dose- and time-dependent manner. Phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBu) increased tPA concentration in the culture medium by eight to 12 times after 24 h with half-maximal stimulation at 13 and 55 nM, respectively. Maximum release by histamine was only half that of the phorbol esters and required 18 microM for half-maximal response. Kinetics of enhanced release was similar with both types of agonists: a 4-h lag period followed by a period of rapid release (4 h in PMA-treated and 10 h in histamine-treated cultures) followed by a decline toward pretreatment rates. The PMA and histamine effects were additive while histamine and thrombin, which also stimulates tPA release in human endothelial cells, were no more effective together than they were alone. Exposure of the cells to PMA, PDBu, or phorbol 12,13-didecanoate caused a loss of responsiveness to second treatment of the homologous agent that was time- and dose-dependent, sustained, and specific to active tumor promoters (half-maximal desensitization = 52 nM PDBu). A partial desensitized state was also established by histamine which resulted in a 60% lower response to a second challenge dose. Histamine-induced desensitization did not interfere with the PMA response. However, PMA-induced desensitization caused a 75% loss of the histamine and a 67% loss of the thrombin effects. These studies indicate that tumor promoters are potent agonists of tPA release from human endothelial cells and establish a desensitized state to further stimulation. Treatment of these cells with histamine has similar effects which may be mediated at least in part by pathways common to phorbol ester stimulation.  相似文献   

15.
Single-chain urokinase-type plasminogen activator (scu-PA), a potential therapeutic reagent for thrombosis, is activated in plasma by plasmin. The activated enzyme is further digested by plasmin to generate low-molecular-weight urokinase (LMW-UK), which has no affinity for fibrin. To circumvent this dual effect of plasmin, we synthesized in Escherichia coli a variant of scu-PA, which is not converted to LMW-UK on treatment with plasmin. In another variant, the activation cleavage site was modified such that activation by plasmin was slowed down and that inactivation by thrombin was greatly diminished. The combination of these variants may be applicable as an effective thrombolytic reagent for clinical use.  相似文献   

16.
17.
It was found that cyanogen bromide (BrCN) treatment of the highly purified human urinary trypsin inhibitors (H-UTI; specific activity 1,897 U/mg protein, and L-UTI; specific activity 1,850 U/mg protein) readily produced new plasmin inhibitors with almost no loss of UTI activity. Five multiple forms of chemically cleaved inhibitors (UTIB-I, UTIB-II, UTIB-III, UTIB-IV and UTIB-V) could be isolated from BrCN-treated L-UTI by isoelectric focusing and gel filtration. These inhibitors were very acid-stable and their isoelectric points (pI) were 4.5, 4.6, 4.9, 5.1 and 6.4, respectively. The molecular weights by SDS-polyacrylamide gel electrophoresis were almost the same at about 23,000 +/- 3,000. Although these inhibitors showed both anti-plasmin and anti-trypsin activities, much higher anti-plasmin/anti-trypsin activities were observed in the cleaved inhibitors than in the parent UTI. They competitively inhibited human plasmin with Ki values of 3.0-4.1 X 10(-8) mol/l (H-D-Val-Leu-Lys-pNA substrate).  相似文献   

18.
Human high molecular weight urokinase, a plasminogen activator, when minimally reduced with 0.01 M 2-mercaptoethanol for 10 h at pH 8.0 and 25 degrees C and then carboxymethylated with sodium iodoacetate, gave two chains, a functionally active heavy chain with about 80% of the original activity and a light chain. These two chains were found to be linked by a single interchain disulfide bond. The functionally active heavy chain can be isolated by an affinity chromatography method with [N alpha-(epsilon-aminocaproyl)-DL-homoarginine hexylester]-Sepharose. The light chain, which has no enzyme activity, is not adsorbed to the affinity matrix, whereas the active heavy chain was adsorbed and subsequently eluted. The active heavy chain was further purified by gel filtration on Sephadex G-100. This preparation was found to be homogeneous by both analytical and sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. The molecular weight of the active heavy chain was determined to be 33,000 by Sephadex G-100 gel filtration and 31,000 by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Its specific activity, with L-pyroglutamyl-glycyl-L-arginine-p-nitroanilide, was determined to be 208,000 IU/mg of protein. Approximately 87% active sites were found by p-nitrophenyl-p'-guanidino-benzoate titration with a molar activity of 7.41 X 10(9) IU/mmol of active site. The active heavy chain when compared to low molecular weight urokinase has a similar molecular weight, specific activity, and amino acid composition. The NH2-terminal residue found in the active heavy chain was lysine which was the same as that found in low molecular weight urokinase, whereas the NH2-terminal residues found in high molecular weight urokinase were serine and lysine. Serine is the NH2-terminal residue of the light chain of high molecular weight urokinase. The steady state kinetic parameters of activation of human Glu-plasminogen by the active heavy chain were also similar to low molecular weight urokinase, as were the amidase parameters of these enzymes. The Michaelis constants of activation (Kplg) were 2.11 and 2.21 microM, respectively; the catalytic rate constants of activation (kplg) were 51.7 and 44.1 min-1, respectively, with second order rate constants, kplg/Kplg of 24.5 and 20.2 microM-1 min-1, respectively.  相似文献   

19.
Hybridomas producing a monoclonal IgG1 antibody to a human plasminogen-activating enzyme with an apparent mol. wt. of 66,000 (66 K, HPA66) from human melanoma cells were obtained by fusion of NSI-Ag 4/1 mouse myeloma cells with spleen cells from a mouse immunized with a partially purified preparation of the enzyme. Screening for clones of hybridomas producing antibodies to HPA66 was performed with the impure enzyme preparation. A preliminary screening included enzyme-linked immunosorbent assay and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting; the final identification was based on inhibition of the enzymatic activity of HPA66 which was complete at high antibody concentrations. No inhibition of three other human and murine plasminogen activators or of plasmin was observed. Employing a one-step affinity procedure with the antibody coupled to Sepharose, HPA66 was purified approximately 200-fold from conditioned medium from the melanoma cells with a yield of 79%. The purified HPA66 was homogeneous as evaluated by SDS-PAGE. Electrophoresis under reducing conditions indicated that it consisted of one polypeptide chain. The binding constant between the antibody and 125I-labelled HPA66 was approximately 2.5 x 10(9) l/mol. The antibody did not bind to a variety of other plasminogen activators, including 52-K and 36-K human enzymes and 48-K and 75-K murine enzymes. Previously, a monoclonal antibody against another enzyme was derived by the sole use of enzyme inhibition for screening. The present study represents a modification of this procedure that can be used when antibody-unrelated inhibitors of the enzyme are present in hybridoma culture fluid.  相似文献   

20.
Annexin A2 (p36) is a highly alpha-helical molecule that consists of two opposing sides, a convex side that contains the phospholipid-binding sites and a concave side, which faces the extracellular milieu and contains multiple ligand-binding sites. The amino-terminal region of annexin A2 extends along the concave side of the protein and contains the binding site for the S100A10 (p11) subunit. The interaction of these subunits results in the formation of the heterotetrameric form of the protein, annexin A2-S100A10 heterotetramer (AIIt). To simulate the orientation of AIIt on the plasma membrane we bound AIIt to a phospholipid bilayer that was immobilized on a BIAcore biosensor chip. Surface plasmon resonance was used to observe in real time the molecular interactions between phospholipid-associated AIIt or its annexin A2 subunit and the ligands, tissue-type plasminogen activator (t-PA), plasminogen, and plasmin. AIIt bound t-PA (Kd = 0.68 microm), plasminogen (Kd = 0.11 microm), and plasmin (Kd = 75 nm) with moderate affinity. Contrary to previous reports, the phospholipid-associated annexin A2 subunit failed to bind t-PA or plasminogen but bound plasmin (Kd = 0.78 microm). The S100A10 subunit bound t-PA (Kd = 0.45 microm), plasminogen (Kd = 1.81 microm), and plasmin (Kd = 0.36 microm). Removal of the carboxyl-terminal lysines from the S100A10 subunit attenuated t-PA and plasminogen binding to AIIt. These results show that the carboxyl-terminal lysines of S100A10 form t-PA and plasminogen-binding sites. In contrast, annexin A2 and S100A10 contain distinct binding sites for plasmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号