首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Mechanisms of mRNA decay in bacteria: a perspective   总被引:100,自引:0,他引:100  
J G Belasco  C F Higgins 《Gene》1988,72(1-2):15-23
  相似文献   

5.
6.
7.
8.
Functional link between the mammalian exosome and mRNA decapping.   总被引:16,自引:0,他引:16  
Z Wang  M Kiledjian 《Cell》2001,107(6):751-762
Mechanistic understanding of mammalian mRNA turnover remains incomplete. We demonstrate that the 3' to 5' exoribonuclease decay pathway is a major contributor to mRNA decay both in cells and in cell extract. An exoribonuclease-dependent scavenger decapping activity was identified that follows decay of the mRNA and hydrolyzes the residual cap. The decapping activity is associated with a subset of the exosome proteins in vivo, implying a higher-order degradation complex consisting of exoribonucleases and a decapping activity, which together coordinate the decay of an mRNA. These findings indicate that following deadenylation of mammal mRNA, degradation proceeds by a coupled 3' to 5' exoribonucleolytic activity and subsequent hydrolysis of the cap structure by a scavenger decapping activity.  相似文献   

9.
10.
J G Belasco  C Y Chen 《Gene》1988,72(1-2):109-117
  相似文献   

11.
12.
The paralogous ribonucleases J1 and J2, recently identified in Bacillus subtilis, have both endoribonucleolytic and 5′‐to‐3′ exoribonucleolytic activities and participate in degradation and regulatory processing of mRNA. RNases J1 and J2 have partially overlapping target specificities, but only RNase J1 is essential for B. subtilis growth. Because mRNA decay is important in regulation of virulence factors of Streptococcus pyogenes (the group A streptococcus, GAS), we investigated the role of these newly described RNases in GAS. We found that conditional mutants for both RNases J1 and J2 require induction for growth, so we conclude that, unlike the case in B. subtilis, both of these RNases are essential for GAS growth, and therefore their functions are not redundant. We compared decay of representatives of the two classes of messages we had previously identified: Class I, which decay rapidly in exponential and stationary phase of growth (hasA and gyrA), and Class II, which are stable in stationary phase and exhibit a biphasic decay curve in exponential phase (sagA and sda). We report that RNases J1 and J2 affect the rate of decay of Class I messages and the length of the first phase in decay of Class II messages.  相似文献   

13.
G Klug  S Jock  R Rothfuchs 《Gene》1992,121(1):95-102
In Rhodobacter capsulatus the puf operon encodes proteins of the photosynthetic apparatus. The polycistronic puf mRNA is comprised of segments that show differential stability. Here, we show that the rate of decay of the 2.7-kb pufBALMX mRNA species in Escherichia coli depends on the activity of ribonuclease E (RNase E), whereas the degradation of the 0.5-kb pufBA mRNA segment is not affected by a mutation in the rne gene. The RNase E-promoted decay of the pufLMX mRNA depends on the presence of a 1.4-kb pufLM mRNA segment, in which rate-limiting endonucleolytic cleavage was postulated to occur in R. capsulatus. The insertion of 185 bp of this 1.4-kb segment into pufB results in an RNase E-dependent decay of the modified pufBA mRNA segment in E. coli. Our findings suggest that in R. capsulatus an RNase E-like activity is responsible for the rate-limiting endonucleolytic cleavage occurring within the pufLM mRNA segment, whereas the 0.5-kb pufBA mRNA segment is degraded by a different RNase E-independent decay mechanism.  相似文献   

14.
15.
16.
In both Bacteria and Eukaryotes, degradation is known to start at the 5' and at the 3' extremities of mRNAs. Until the recent discovery of 5'-to-3' exoribonucleases in hyperthermophilic Euryarchaeota, the exosome was assumed to be the key enzyme in mRNA degradation in Archaea. By means of zymogram assays and bioinformatics, we have identified a 5'-to-3' exoribonuclease activity in the crenarchaeum Sulfolobus solfataricus (Sso), which is affected by the phosphorylation state of the 5'-end of the mRNA. The protein comprises typical signature motifs of the β-CASP family of metallo-β-lactamases and was termed Sso-RNAse J. Thus, our study provides the first evidence for a 5'-to-3' directional mRNA decay pathway in the crenarchaeal clade of Archaea. In Bacteria the 5'-end of mRNAs is often protected by a tri-phosphorylated 5'-terminus and/or by stem-loop structures, while in Eukaryotes the cap-binding complex is responsible for this task. Here, we show that binding of translation initiation factor a/eIF2(γ) to the 5'-end of mRNA counteracts the 5'-to-3' exoribonucleolytic activity of Sso-RNase J in vitro. Hence, 5'-to-3' directional decay and 5'-end protection appear to be conserved features of mRNA turnover in all kingdoms of life.  相似文献   

17.
18.
19.
Stem-loop structures can protect upstream mRNA from degradation by impeding the processive activities of 3′–5′ exoribonucleases. The ability of such structures to impede exonuclease activity in vitro is insufficient to account for the stability they can confer on mRNA in vivo. In this study we identify a factor from Escherichia coli which specifically impedes the processive activity of the 3′–5′ exonuclease PNPase at stem-loop structures in vitro. This factor can, potentialiy, reconcile the apparent discrepancy between the ability of 3′ stem-loop structures to stabilize upstream mRNA in vitro and in vivo. Its mechanism of action, and possible role in regulating mRNA degradation, is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号