首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ventricular tachyarrhythmias are the most common cause of sudden cardiac death (SCD); a healed myocardial infarction increases the risk of SCD. We determined the contribution of specific repolarization abnormalities to ventricular tachyarrhythmias in a postinfarction model of SCD. For our methods, we used a postinfarction canine model of SCD, where an exercise and ischemia test was used to stratify animals as either susceptible (VF(+)) or resistant (VF(-)) to sustained ventricular tachyarrhythmias. Our results show no changes in global left ventricular contractility or volumes occurred after infarction. At 8-10 wk postmyocardial infarction, myocytes were isolated from the left ventricular midmyocardial wall and studied. In the VF(+) animals, myocyte action potential (AP) prolongation occurred at 50 and 90% repolarization (P < 0.05) and was associated with increased variability of AP duration and afterdepolarizations. Multiple repolarizing K(+) currents (I(Kr), I(to)) and inward I(K1) were also reduced (P < 0.05) in myocytes from VF(+) animals compared with control, noninfarcted dogs. In contrast, only I(to) was reduced in VF(-) myocytes compared with controls (P < 0.05). While afterdepolarizations were not elicited at baseline in myocytes from VF(-) animals, afterdepolarizations were consistently elicited after the addition of an I(Kr) blocker. In conclusion, the loss of repolarization reserve via reductions in multiple repolarizing currents in the VF(+) myocytes leads to AP prolongation, repolarization instability, and afterdepolarizations in myocytes from animals susceptible to SCD. These abnormalities may provide a substrate for initiation of postmyocardial infarction ventricular tachyarrhythmias.  相似文献   

2.
Early afterdepolarizations (EADs) are voltage oscillations that occur during the repolarizing phase of the cardiac action potential and cause cardiac arrhythmias in a variety of clinical settings. EADs occur in the setting of reduced repolarization reserve and increased inward-over-outward currents, which intuitively explains the repolarization delay but does not mechanistically explain the time-dependent voltage oscillations that are characteristic of EADs. In a recent theoretical study, we identified a dual Hopf-homoclinic bifurcation as a dynamical mechanism that causes voltage oscillations during EADs, depending on the amplitude and kinetics of the L-type Ca(2+) channel (LTCC) current relative to the repolarizing K(+) currents. Here we demonstrate this mechanism experimentally. We show that cardiac monolayers exposed to the LTCC agonists BayK8644 and isoproterenol produce EAD bursts that are suppressed by the LTCC blocker nitrendipine but not by the Na(+) current blocker tetrodoxin, depletion of intracellular Ca(2+) stores with thapsigargin and caffeine, or buffering of intracellular Ca(2+) with BAPTA-AM. These EAD bursts exhibited a key dynamical signature of the dual Hopf-homoclinic bifurcation mechanism, namely, a gradual slowing in the frequency of oscillations before burst termination. A detailed cardiac action potential model reproduced the experimental observations, and identified intracellular Na(+) accumulation as the likely mechanism for terminating EAD bursts. Our findings in cardiac monolayers provide direct support for the Hopf-homoclinic bifurcation mechanism of EAD-mediated triggered activity, and raise the possibility that this mechanism may also contribute to EAD formation in clinical settings such as long QT syndromes, heart failure, and increased sympathetic output.  相似文献   

3.
How early (EADs) and delayed afterdepolarizations (DADs) overcome electrotonic source-sink mismatches in tissue to trigger premature ventricular complexes remains incompletely understood. To study this question, we used a rabbit ventricular action potential model to simulate tissues in which a central area of contiguous myocytes susceptible to EADs or DADs was surrounded by unsusceptible tissue. In 1D tissue with normal longitudinal conduction velocity (0.55 m/s), the numbers of contiguous susceptible myocytes required for an EAD and a barely suprathreshold DAD to trigger a propagating action potential were 70 and 80, respectively. In 2D tissue, these numbers increased to 6940 and 7854, and in 3D tissue to 696,910 and 817,280. These numbers were significantly decreased by reduced gap junction conductance, simulated fibrosis, reduced repolarization reserve and heart failure electrical remodeling. In conclusion, the source-sink mismatch in well-coupled cardiac tissue powerfully protects the heart from arrhythmias due to sporadic afterdepolarizations. Structural and electrophysiological remodeling decrease these numbers significantly but still require synchronization mechanisms for EADs and DADs to overcome the robust protective effects of source-sink mismatch.  相似文献   

4.
Transgenic mice have become important experimental models in the investigation of mechanisms causing cardiac arrhythmias because of the ability to create strains with alterations in repolarizing membrane currents. It is important to relate alterations in membrane currents in cells to their phenotypic expression on the electrocardiogram (ECG). The murine ECG, however, has unusual characteristics that make interpretation of the phenotypic expression of changes in ventricular repolarization uncertain. The major deflection representing the QRS (referred to as "a") is often followed by a secondary slower deflection ("b") and sometimes a subtle third deflection ("c"). To determine whether the second or third deflections or both represent ventricular repolarization, we recorded the ventricular monophasic action potential (MAP) in open-chest mice and correlated repolarization with the ECG. There was no significant correlation by linear regression, between action potential duration to 50% or 90% repolarization (APD(50) or APD(90)), respectively, of the MAP and either the interval from onset of Q to onset of b (Qb interval) or onset of c (Qc interval). Administration of 4-aminopyridine (4-AP) significantly prolonged APD(50) and APD(90) and the Qb interval, indicating that this deflection on the ECG represents part of ventricular repolarization. After 4-AP, the c wave disappeared, also suggesting that it represents a component of ventricular repolarization. Although it appears that both the b and c waves that follow the Q wave on the ECG represent ventricular repolarization, neither correlates exactly with APD(90) of the MAP. Therefore, an accurate measurement of complete repolarization of the murine ventricle cannot be obtained from the surface ECG.  相似文献   

5.
为了分析早期后除极(early afterdepolarizations,EADs)诱发室颤的机理,本研究基于精细的浦肯野纤维网络与心室解剖数据,构建了一个三维心室电传导模型.基于该模型,模拟了产生早期后除极的电生理变化,探讨了三种心室细胞的早期后除极的易感性,分析了早期后除极易感细胞对折返波的影响,最后定量比较早期后除极诱发室颤的伪心电图的改变情况.实验结果表明:中间层细胞早期后除极易感性最强,中间层细胞早期后除极的产生能够导致折返波破裂,并且在心电图中表现为紊乱的不规则的颤动心律,这与之前在动物实验观察得到的现象一致,因此中间层细胞可能是一个诱发室颤的重要靶点.  相似文献   

6.
Early afterdepolarizations (EADs) are classically generated at slow heart rates when repolarization reserve is reduced by genetic diseases or drugs. However, EADs may also occur at rapid heart rates if repolarization reserve is sufficiently reduced. In this setting, spontaneous diastolic sarcoplasmic reticulum (SR) Ca release can facilitate cellular EAD formation by augmenting inward currents during the action potential plateau, allowing reactivation of the window L-type Ca current to reverse repolarization. Here, we investigated the effects of spontaneous SR Ca release-induced EADs on reentrant wave propagation in simulated one-, two-, and three-dimensional homogeneous cardiac tissue using a version of the Luo-Rudy dynamic ventricular action potential model modified to increase the likelihood of these EADs. We found: 1) during reentry, nonuniformity in spontaneous SR Ca release related to subtle differences in excitation history throughout the tissue created adjacent regions with and without EADs. This allowed EADs to initiate new wavefronts propagating into repolarized tissue; 2) EAD-generated wavefronts could propagate in either the original or opposite direction, as a single new wave or two new waves, depending on the refractoriness of tissue bordering the EAD region; 3) by suddenly prolonging local refractoriness, EADs caused rapid rotor displacement, shifting the electrical axis; and 4) rapid rotor displacement promoted self-termination by collision with tissue borders, but persistent EADs could regenerate single or multiple focal excitations that reinitiated reentry. These findings may explain many features of Torsades des pointes, such as perpetuation by focal excitations, rapidly changing electrical axis, frequent self-termination, and occasional degeneration to fibrillation.  相似文献   

7.
Contemporary accounts of the initiation of cardiac arrhythmias typically rely on after-depolarizations as the trigger for reentrant activity. The after-depolarizations are usually triggered by calcium entry or spontaneous release within the cells of the myocardium or the conduction system. Here we propose an alternative mechanism whereby arrhythmias are triggered autonomously by cardiac cells that fail to repolarize after a normal heartbeat. We investigated the proposal by representing the heart as an excitable medium of FitzHugh-Nagumo cells where a proportion of cells were capable of remaining depolarized indefinitely. As such, those cells exhibit bistable membrane dynamics. We found that heterogeneous media can tolerate a surprisingly large number of bistable cells and still support normal rhythmic activity. Yet there is a critical limit beyond which the medium is persistently arrhythmogenic. Numerical analysis revealed that the critical threshold for arrhythmogenesis depends on both the strength of the coupling between cells and the extent to which the abnormal cells resist repolarization. Moreover, arrhythmogenesis was found to emerge preferentially at tissue boundaries where cells naturally have fewer neighbors to influence their behavior. These findings may explain why atrial fibrillation typically originates from tissue boundaries such as the cuff of the pulmonary vein.  相似文献   

8.
Premature ventricular complexes (PVCs), which are abnormal impulse propagations in cardiac tissue, can develop because of various reasons including early afterdepolarizations (EADs). We show how a cluster of EAD-generating cells (EAD clump) can lead to PVCs in a model of cardiac tissue, and also investigate the factors that assist such clumps in triggering PVCs. In particular, we study, through computer simulations, the effects of the following factors on the PVC-triggering ability of an EAD clump: (1) the repolarization reserve (RR) of the EAD cells; (2) the size of the EAD clump; (3) the coupling strength between the EAD cells in the clump; and (4) the presence of fibroblasts in the EAD clump. We find that, although a low value of RR is necessary to generate EADs and hence PVCs, a very low value of RR leads to low-amplitude EAD oscillations that decay with time and do not lead to PVCs. We demonstrate that a certain threshold size of the EAD clump, or a reduction in the coupling strength between the EAD cells, in the clump, is required to trigger PVCs. We illustrate how randomly distributed inexcitable obstacles, which we use to model collagen deposits, affect PVC-triggering by an EAD clump. We show that the gap-junctional coupling of fibroblasts with myocytes can either assist or impede the PVC-triggering ability of an EAD clump, depending on the resting membrane potential of the fibroblasts and the coupling strength between the myocyte and fibroblasts. We also find that the triggering of PVCs by an EAD clump depends sensitively on factors like the pacing cycle length and the distribution pattern of the fibroblasts.  相似文献   

9.
10.
The electrophysiological effects of oxidized low density lipoproteins (ox-LDLs) have been studied in rabbit Purkinje fibers using standard microelectrode techniques, in comparison with native LDLs (n-LDLs) and lysophosphatidylcholine (LPC). At the concentration of 100 micrograms protein/ml, ox-LDL but never n-LDL induced the abrupt occurrence of abnormal electrical activities during the basic stimulation of 1 Hz (6/13 fibers) and the development of either early afterdepolarizations (6/13 fibers) or abnormal automaticity (4/13 fibers) at low frequencies (0.1 and 0.03 Hz). Short trains of rapid stimulation (2, 3, 4 and 5 Hz) did not trigger delayed afterdepolarizations. However, early afterhyperpolarizations were commonly seen after each action potential. 30 microM LPC caused quite similar electrophysiological derangements. The results suggest that ox-LDLs may exert arrhythmogenic effects partly explained by their LPC content.  相似文献   

11.
The effects of the Ca2+ ionophore, A23187, on the contraction and membrane action potential of the isolated guinea-pig papillary muscle were examined at various temperatures (30-16 degrees C) and compared to those of isoprenaline and a high calcium medium. A23187 caused a marked positive inotropic effect with a significant prolongation of the action potential duration at an early repolarization phase but not a late repolarization phase at normal temperature (30 degrees C). Such an inotropic effect was completely abolished at low temperature (16 degrees C) where a marked positive inotropic effect of isoprenaline (5 X 10(-8) M) and a high calcium medium (6.2 mM) still remained. These results suggest that the cardiac responsiveness to A23187 was sensitive to a low temperature at which a membrane lipid phase transition may occur.  相似文献   

12.
Repolarization alternans is a harbinger of sudden cardiac death, particularly when it becomes spatially discordant. Alternans, a beat-to-beat alternation in the action potential duration (APD) and intracellular Ca (Cai), can arise from either tissue heterogeneities or dynamic factors. Distinguishing between these mechanisms in normal cardiac tissue is difficult because of inherent complex three-dimensional tissue heterogeneities. To evaluate repolarization alternans in a simpler two-dimensional cardiac substrate, we optically recorded voltage and/or Cai in monolayers of cultured neonatal rat ventricular myocytes during rapid pacing, before and after exposure to BAY K 8644 to enhance dynamic factors promoting alternans. Under control conditions (n = 37), rapid pacing caused detectable APD alternans in 81% of monolayers, and Cai transient alternans in all monolayers, becoming spatially discordant in 62%. After BAY K 8644 (n = 28), conduction velocity restitution became more prominent, and APD and Cai alternans developed and became spatially discordant in all monolayers, with an increased number of nodal lines separating out-of-phase alternating regions. Nodal lines moved closer to the pacing site with faster pacing rates and changed orientation when the pacing site was moved, as predicted for the dynamically generated, but not heterogeneity-based, alternans. Spatial APD gradients during spatially discordant alternans were sufficiently steep to induce conduction block and reentry. These findings indicate that spatially discordant alternans severe enough to initiate reentry can be readily induced by pacing in two-dimensional cardiac tissue and behaves according to predictions for a predominantly dynamically generated mechanism.  相似文献   

13.
The atrioventricular node controls cardiac impulse conduction and generates pacemaker activity in case of failure of the sino-atrial node. Understanding the mechanisms of atrioventricular automaticity is important for managing human pathologies of heart rate and conduction. However, the physiology of atrioventricular automaticity is still poorly understood. We have investigated the role of three key ion channel-mediated pacemaker mechanisms namely, Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of atrioventricular node cells (AVNCs). We studied atrioventricular conduction and pacemaking of AVNCs in wild-type mice and mice lacking Ca(v)3.1 (Ca(v)3.1(-/-)), Ca(v)1.3 (Ca(v)1.3(-/-)), channels or both (Ca(v)1.3(-/-)/Ca(v)3.1(-/-)). The role of HCN channels in the modulation of atrioventricular cells pacemaking was studied by conditional expression of dominant-negative HCN4 channels lacking cAMP sensitivity. Inactivation of Ca(v)3.1 channels impaired AVNCs pacemaker activity by favoring sporadic block of automaticity leading to cellular arrhythmia. Furthermore, Ca(v)3.1 channels were critical for AVNCs to reach high pacemaking rates under isoproterenol. Unexpectedly, Ca(v)1.3 channels were required for spontaneous automaticity, because Ca(v)1.3(-/-) and Ca(v)1.3(-/-)/Ca(v)3.1(-/-) AVNCs were completely silent under physiological conditions. Abolition of the cAMP sensitivity of HCN channels reduced automaticity under basal conditions, but maximal rates of AVNCs could be restored to that of control mice by isoproterenol. In conclusion, while Ca(v)1.3 channels are required for automaticity, Ca(v)3.1 channels are important for maximal pacing rates of mouse AVNCs. HCN channels are important for basal AVNCs automaticity but do not appear to be determinant for β-adrenergic regulation.  相似文献   

14.
The present investigation continues a previous study in which the soma-dendrite system of sensory neurons was excited by stretch deformation of the peripheral dendrite portions. Recording was done with intracellular leads which were inserted into the cell soma while the neuron was activated orthodromically or antidromically. The analysis was also extended to axon conduction. Crayfish, Procambarus alleni (Faxon) and Orconectes virilis (Hagen), were used. 1. The size and time course of action potentials recorded from the soma-dendrite complex vary greatly with the level of the cell's membrane potential. The latter can be changed over a wide range by stretch deformation which sets up a "generator potential" in the distal portions of the dendrites. If a cell is at its resting unstretched equilibrium potential, antidromic stimulation through the axon causes an impulse which normally overshoots the resting potential and decays into an afternegativity of 15 to 20 msec. duration. The postspike negativity is not followed by an appreciable hyperpolarization (positive) phase. If the membrane potential is reduced to a new steady level a postspike positivity appears and increases linearly over a depolarization range of 12 to 20 mv. in various cells. At those levels the firing threshold of the cell for orthodromic discharges is generally reached. 2. The safety factor for conduction between axon and cell soma is reduced under three unrelated conditions, (a) During the recovery period (2 to 3 msec.) immediately following an impulse which has conducted fully over the cell soma, a second impulse may be delayed, may invade the soma partially, or may be blocked completely. (b) If progressive depolarization is produced by stretch, it leads to a reduction of impulse height and eventually to complete block of antidromic soma invasion, resembling cathodal block, (c) In some cells, when the normal membrane potential is within several millivolts of the relaxed resting state, an antidromic impulse may be blocked and may set up within the soma a local potential only. The local potential can sum with a second one or it may sum with potential changes set up in the dendrites, leading to complete invasion of the soma. Such antidromic invasion block can always be relieved by appropriate stretch which shifts the membrane potential out of the "blocking range" nearer to the soma firing level. During the afterpositivity of an impulse in a stretched cell the membrane potential may fall below or near the blocking range. During that period another impulse may be delayed or blocked. 3. Information regarding activity and conduction in dendrites has been obtained indirectly, mainly by analyzing the generator action under various conditions of stretch. The following conclusions have been reached: The large dendrite branches have similar properties to the cell body from which they arise and carry the same kind of impulses. In the finer distal filaments of even lightly depolarized dendrites, however, no axon type all-or-none conduction occurs since the generator potential persists to a varying degree during antidromic invasion of the cell. With the membrane potential at its resting level the dendrite terminals contribute to the prolonged impulse afternegativity of the soma. 4. Action potentials in impaled axons and in cell bodies have been compared. It is thought that normally the over-all duration of axon impulses is shorter. Local activity during reduction of the safety margin for conduction was studied. 5. An analysis was made of high frequency grouped discharges which occasionally arise in cells. They differ in many essential aspects from the regular discharges set up by the generator action. It is proposed that grouped discharges occur only when invasion of dendrites is not synchronous, due to a delay in excitation spread between soma and dendrites. Each impulse in a group is assumed to be caused by an impulse in at least one of the large dendrite branches. Depolarization of dendrites abolishes the grouped activity by facilitating invasion of the large dendrite branches.  相似文献   

15.
Early afterdepolarizations (EADs) induced by suppression of cardiac delayed rectifier I (Kr) and/or I (Ks) channels cause fatal ventricular tachyarrhythmias. In guinea pig ventricular myocytes, partial block of one of the channels with complete block of the other reproducibly induced EADs. Complete block of both I (Kr) and I (Ks) channels depolarized the take-off potential and reduced the amplitude of EADs, which in some cases were not clearly separated from the preceding action potentials. A selective L-type Ca(2+) (I (Ca,L)) channel blocker, nifedipine, effectively suppressed EADs at submicromolar concentrations. As examined with the action potential-clamp method, I (Ca,L) channels mediated inward currents with a spike and dome shape during action potentials. I (Ca,L) currents decayed mainly due to inactivation in phase 2 and deactivation in phase 3 repolarization. When EADs were induced by complete block of I (Kr) channels with partial block of I (Ks) channels, repolarization of the action potential prior to EAD take-off failed to increase I (K1) currents and thus failed to completely deactivate I (Ca,L) channels, which reactivated and mediated inward currents during EADs. When both I (Kr) and I (Ks) channels were completely blocked, I (Ca,L) channels were not deactivated and mediated sustained inward currents until the end of EADs. Under this condition, the recovery and reactivation of I (Ca,L) channels were absent before EADs. Therefore, an essential mechanism underlying EADs caused by suppression of the delayed rectifiers is the failure to completely deactivate I (Ca,L) channels.  相似文献   

16.
17.
In this study, we assessed the effects of O-demethyl encainide (0.5 microM), the most active metabolite of encainide, and the combination with 3-methoxy-O-demethyl encainide (0.5 microM) and encainide (0.1 microM) on cardiac action potential characteristics in normal canine Purkinje fibers and Purkinje fibers surviving 24 h of myocardial ischemia. O-demethyl encainide decreased Vmax and conduction in normal Purkinje fibers and Purkinje fibers surviving infarction. Further decreases were observed with the combination. Action potential duration at both 50 and 95% repolarization was decreased by O-demethyl encainide. The combination of O-demethyl encainide, 3-methoxy-O-demethyl encainide, and encainide had no further effect. The combination of O-demethyl encainide, 3-methoxy-O-demethyl encainide, and encainide produced a smaller change in effective refractory period than O-demethyl encainide in normal Purkinje fibers and in Purkinje fibers surviving infarction. O-demethyl encainide and the combination shifted the membrane responsiveness curve to more negative potentials in both normal Purkinje fibers and Purkinje fibers surviving infarction. It is apparent from this study that there are differences in the effects of O-demethyl encainide and the combination of O-demethyl encainide, 3-methoxy-O-demethyl encainide, and encainide in normal Purkinje fibers compared with Purkinje fibers surviving infarction. Also, the combination used in this study had different electrophysiological effects than those of O-demethyl encainide alone.  相似文献   

18.
In cardiac cells, evoked Ca2+ releases or spontaneous Ca2+ waves activate the inward Na+/Ca2+ exchange current (INaCa), which may modulate membrane excitability and arrhythmogenesis. In this study, we examined changes in membrane potential due to INaCa elicited by sarcoplasmic reticulum (SR) Ca2+ release in guinea pig ventricular myocytes using whole cell current clamp, fluorescence, and confocal microscopy. Inhibition of INaCa by Na+-free, Li+-containing Tyrode solution reversibly abbreviated the action potential duration at 90% repolarization (APD90) by 50% and caused SR Ca2+ overload. APD90 was similarly abbreviated in myocytes exposed to the Na+/Ca2+ exchange inhibitor KB-R7943 (5 microM) or after inhibition of SR Ca2+ release with ryanodine (20 microM). In the absence of extracellular Na+, spontaneous SR Ca2+ releases caused minimal changes in resting membrane potential. After the myocytes were returned to Na+-containing solution, the potentiated intracellular Ca2+ concentration ([Ca2+]i) transients dramatically prolonged APD90 and [Ca2+]i oscillations caused delayed and early afterdepolarizations (DADs and EADs). Laser-flash photolysis of caged Ca2+ mimicked the effects of spontaneous [Ca2+]i oscillations, confirming that APD prolongation, DADs, and EADs could be ascribed to intracellular Ca2+ release. These results suggest that Na+/Ca2+ exchange is a major physiological determinant of APD and that INaCa activation by spontaneous SR Ca2+ release/oscillations, depending on the timing, can account for both DADs and EADs during SR Ca2+ overload.  相似文献   

19.
Two major mechanisms have been postulated for the arrhythmogenic tendency observed in Brugada Syndrome (BrS): delays in conduction or increased heterogeneities in repolarization. We use a contact mapping system to directly investigate the interacting roles of these two mechanisms in arrhythmogenesis using a genetic murine model for BrS for the first time. Electrograms were obtained from a multielectrode recording array placed against the left ventricle and right ventricle (RV) of spontaneously beating Langendorff-perfused wild type (WT) and Scn5a+/- mouse hearts. Scn5a+/- hearts showed activation waves arriving at the epicardial surface consistent with slowed conduction, which was exacerbated in the presence of flecainide. Lines of conduction block across the RV resulting from premature ventricular beats led to the formation of reentrant circuits and polymorphic ventricular tachycardia. WT hearts showed an inverse relationship between activation times and activation recovery intervals measured at the epicardial surface, which resulted in synchronicity of repolarization times. In contrast, Scn5a+/- hearts, despite having smaller mean activation recovery intervals, demonstrated a greater heterogeneity compared with WT. Isochronal maps showed that their normal activation recovery interval gradients at the epicardial surface were disrupted, leading to heterogeneity in repolarization times. We thus directly demonstrate the initiation of arrhythmia in the RV of Scn5a+/- hearts. This occurs as a result of the combination of repolarization heterogeneities leading to lines of conduction block and unidirectional conduction, with conduction slowing allowing the formation of reentrant circuits. The repolarization heterogeneities may also be responsible for the changing pattern of block, leading to the polymorphic character of the resulting ventricular tachycardia.  相似文献   

20.
Effects of reduction in potassium conductance on impulse conduction were studied in squid giant axons. Internal perfusion of axons with tetraethylammonium (TEA) ions reduces G K and causes the duration of action potential to be increased up to 300 ms. This prolongation of action potentials does not change their conduction velocity. The shape of these propagating action potentials is similar to membrane action potentials in TEA. Axons with regions of differing membrane potassium conductances are obtained by perfusing the axon trunk and one of its two main branches with TEA after the second branch has been filled with normal perfusing solution. Although the latter is initially free of TEA, this ion diffuses in slowly. Up until a large amount of TEA has diffused into the second branch, action potentials in the two branches have very different durations. During this period, membrane regions with prolonged action potentials are a source of depolarizing current for the other, and repetitive activity may be initiated at transitional regions. After a single stimulus in either axon region, interactions between action potentials of different durations usually led to rebound, or a short burst, of action potentials. Complex interactions between two axon regions whose action potentials have different durations resembles electric activity recorded during some cardiac arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号