首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A glutamic acid at residue 69(Glu(69)) in the HLA-DPB1 gene (Glu(69)) is associated with chronic beryllium disease (CBD) and possibly beryllium sensitization (BeS). This study tested the hypothesis that MHC class II polymorphisms are important in susceptibility to BeS and CBD and that the Glu(69) variant is related to markers of disease severity. Genomic DNA was obtained from BeS (n = 50), CBD (n = 104), and beryllium-exposed nondiseased (Be-nondiseased) (n = 125) subjects. HLA-DPB1, -DRB1, and -DQB1 genotypes were determined by (sequence-specific primers) PCR. Disease severity was assessed by pulmonary function and exercise testing. A higher frequency of the DPB1 Glu(69) gene was found in CBD and BeS compared with the Be-nondiseased subjects, with odds ratios of 10.1 for CBD vs Be-nondiseased and 9.5 for BeS vs Be-nondiseased. The majority of BeS and CBD subjects displayed non-0201 Glu(69) alleles. Glu(69) homozygosity was higher in the CBD subjects, while BeS subjects were intermediate and Be-nondiseased lowest. DRB1*01 and DQB1*05 phenotypes were reduced in CBD vs Be-nondiseased subjects, while DRB1*13 and DQB1*06 were associated with CBD in the absence of Glu(69). Markers of disease severity, including a lower forced vital capacity, diffusion capacity for carbon monoxide, PaO(2) at rest, maximum workload on exercise testing, and a higher arterial-alveolar gradient at rest, were associated with Glu(69) homozygosity. We conclude that DPB1 Glu69 is a marker of sensitization and not specific for disease. Glu(69) homozygosity acts as a functional marker associated with markers of CBD severity.  相似文献   

2.
Human leukocyte antigen DPB1 was reported to contain singly nucleotide polymorphisms conferring the strongest susceptibility to systemic sclerosis in Korean population. However, associations of specific DPB1 alleles with SSc vary in different ethnic populations. The aim of this study was to profile DPB1 alleles in Chinese population and to identify specific DPB1 alleles in association with SSc and clinical and serological features of SSc in Han Chinese. A cohort containing 338 patients with SSc and 480 gender-matched and unrelated controls were examined in the study. The HLA-DPB1 genotyping was performed with sequence-based typing method. Exact p-values were obtained (Fisher''s test) from 2×2 tables of allele counts or allele carriers and disease status. Thirty eight DPB1 alleles were found in the cohort. DPB1*05:01 was the most common allele in this cohort. DPB1*03:01 and *13:01 were significantly increased in SSc. DPB1*13:01 association had already been described in other ethnic populations, whereas DPB1*03:01 was specific to Han Chinese patients with SSc. In addition, comparisons between SSc subsets indicated that patients carrying DPB1*03:01 were more likely to develop pulmonary fibrosis, DPB1*04 carriers were increased in SSc patients with anti-centromere autoantibodies and in contrast, SSc patients with homozygous DPB1*05:01 showed an opposite association with marginal significance.  相似文献   

3.
Sarcoidosis is a granulomatous disorder of unknown etiology, associated with an accumulation of CD4+ T cells and a TH1 immune response. Since previous studies of HLA associations with sarcoidosis were limited by serologic or low-resolution molecular identification, we performed high-resolution typing for the HLA-DPB1, HLA-DQB1, HLA-DRB1, and HLA-DRB3 loci and the presence of the DRB4 or DRB5 locus, to define HLA class II associations with sarcoidosis. A Case Control Etiologic Study of Sarcoidosis (ACCESS) enrolled biopsy-confirmed cases (736 total) from 10 centers in the United States. Seven hundred six (706) controls were case matched for age, race, sex, and geographic area. We studied the first 474 ACCESS patients and case-matched controls. The HLA-DRB1 alleles were differentially distributed between cases and controls (P<.0001). The HLA-DRB1*1101 allele was associated (P<.01) with sarcoidosis in blacks and whites and had a population attributable risk of 16% in blacks and 9% in whites. HLA-DRB1-F(47) was the amino acid residue most associated with sarcoidosis and independently associated with sarcoidosis in whites. The HLA-DPB1 locus also contributed to susceptibility for sarcoidosis and, in contrast to chronic beryllium disease, a non-E(69)-containing allele, HLA-DPB1*0101, conveyed most of the risk. Although significant differences were observed in the distribution of HLA class II alleles between blacks and whites, only HLA-DRB1*1501 was differentially associated with sarcoidosis (P<.003). In addition to being susceptibility markers, HLA class II alleles may be markers for different phenotypes of sarcoidosis (DRB1*0401 for eye in blacks and whites, DRB3 for bone marrow in blacks, and DPB1*0101 for hypercalcemia in whites). These studies confirm a genetic predisposition for sarcoidosis and present evidence for the allelic variation at the HLA-DRB1 locus as a major contributor.  相似文献   

4.
Chronic beryllium disease (CBD) is characterized by a CD4+ T cell alveolitis and granulomatous inflammation in the lung. Genetic susceptibility to this disease has been linked with HLA-DP alleles, particularly those possessing a glutamic acid at position 69 (Glu69) of the beta-chain. However, 15% of CBD patients do not possess a Glu69-containing HLA-DP allele, suggesting that other MHC class II alleles may be involved in disease susceptibility. In CBD patients without a Glu69-containing HLA-DP allele, an increased frequency of HLA-DR13 alleles has been described, and these alleles possess a glutamic acid at position 71 of the beta-chain (which corresponds to position 69 of HLA-DP). Thus, we hypothesized that beryllium presentation to CD4+ T cells was dependent on a glutamic acid residue at the identical position of both HLA-DP and -DR. The results show that HLA-DP Glu69- and HLA-DR Glu71-expressing molecules are capable of inducing beryllium-specific proliferation and IFN-gamma expression by lung CD4+ T cells. Using fibroblasts expressing mutated HLA-DP2 and -DR13 molecules, beryllium recognition was dependent on the glutamic acid at position 69 of HLA-DP and 71 of HLA-DR, suggesting a critical role for this amino acid in beryllium presentation to Ag-specific CD4+ T cells. Thus, these results demonstrate that a single amino acid residue of the MHC class II beta-chain dictates beryllium presentation and potentially, disease susceptibility.  相似文献   

5.
6.
Using the polymerase chain reaction (PCR) and hybridization with oligonucleotide probes, we analyzed the distribution of DPB1 alleles in 99 healthy unrelated individuals from the city of Guangzhou (Canton), South China. Twelve different DPB1 alleles were found in this panel. The most common allele was DPB1*0501 (62.6%). Other major alleles detected included DPB1*02 (DPB1*0201 and DPB1*0202), DPB1*1301, DPB1*0401, and a recently described allele, designated DPB1*2101. The hybridization pattern of DPB1*2101 showed that this allele shared sequences with DPB1*0301 and DPB1*0601 in the A and F hypervariable regions, while the C, D, and E regions were identical to those of DPB1*0202. DPB1*2101 was observed in 11% of the subjects tested. It was found to be in strong linkage dis-equilibrium with DRB1*1202. In family studies, segregation of the haplotype DRB1*1202, DRB3*0301, DQA1*0601, DQB1*0301, DPB1*2101 was observed. The second exon of DPB1*2101 was sequenced from codon 8 to codon 90 and the sequence, inferred from the pattern of hybridization, was confirmed. DPB1*0301, DPB1*0402, DPB1*0101, DPB1*1401, DPB1*1901, and another recently recognized allele, now designated DPB1*2401, were detected with low frequencies. DPB1*2401 had the same hybridization pattern as DPB1*0501 except for a probe that matches codons 85–90. In this region, DPB1*2401 encoded the amino acid sequence GPMTLQ instead of EAVTLQ as in DPB1*0501.  相似文献   

7.
Exposure to beryllium in the workplace can cause beryllium sensitization and chronic beryllium disease. Sensitization to beryllium can be detected in the laboratory using the beryllium lymphocyte proliferation test. It was shown that anti-HLA antibodies could block the beryllium-specific response in the beryllium lymphocyte proliferation test, thereby implicating HLA genes in chronic beryllium disease. A supratypic genetic marker, HLA-DPB1*E69, was found to be strongly associated with immunologic sensitization to beryllium and chronic beryllium disease in beryllium workers. However, there are 40 HLA-DPB1 gene variants that have E69 but that also have other DNA sequence variations. The purpose of the study was to evaluate the evidence for potential differential susceptibility that may be associated with the physical characteristics of HLA protein molecules for which different HLA-DPB1*E69 variants code; that is, do some HLA-DPB1*E69 variants convey higher risk of beryllium sensitization and chronic beryllium disease than others. To do this, two approaches were pursued: first, detailed analysis of the findings from the published literature was performed, and second, computational chemistry was used to seek clues concerning the physical properties of the HLA protein molecules for which these alleles code. Among the 40 HLA-DPB1 gene variants that code for E69, molecular epidemiological studies have suggested a risk hierarchy, where some variants appear to convey low to moderate risk of chronic beryllium disease (e.g., HLA-DPB1*0201, approximately 3-fold increased risk), some convey an intermediate risk (e.g., HLA-DPB1*1901, approximately 5-fold) and others convey high risk (e.g., HLA-DPB1*1701, >10-fold). Molecular modeling has been used to further investigate a potential mechanistic basis for these observations. We found a strong correlation between the hierarchical order of risk of chronic beryllium disease associated with specific alleles and the predicted surface electrostatic potential and charge of the corresponding isotypes. Therefore, when alleles were grouped by the relative negative charge on the molecules for which they code, the data suggest that those alleles associated with the most negatively charged proteins carry the greatest risk of beryllium sensitization and disease.  相似文献   

8.
The identification of 19 different HLA-DPB1 sequences implicates the existence of more DP specificities than can be typed for with cellular methods. How many of the DP sequences can be specifically recognized by T cells, and which of the polymorphic regions can contribute to the specificity of allorecognition, is not known. In order to investigate the distribution and the immunological relevance of recently described DPB1 alleles, we have typed a panel of 98 randomly selected Dutch Caucasoid donors for the HLA-DPB1 locus by oligonucleotide typing. Comparison of the typing results with primed lymphocyte typing (PLT) defined DP specificities shows an extremely good correlation. Moreover, additional alleles could be defined by oligonucleotide typing reducing the number of DP blanks in the panel. By selecting the appropriate responder stimulator combinations we were able to show that distinctive PLT reagents against oligonucleotide defined specificities DPB1*0401, DPB1*0402, DPB1*0901, and DPB1*1301 can be generated. To investigate in more detail which part of the DP molecule is responsible for the specificity of T-cell recognition, T-cell clones were generated against HLA-DPw3. The clones were tested for the recognition of stimulators carrying DPB1 alleles which had been defined by oligonucleotide typing and sequence analyses and which differed in a variable degree from DPB1*0301. The recognition patterns demonstrated that differences of one amino acid in polymorphic regions situated either in the beta sheets or alpha helix of the hypothetical model of the HLA class II molecule can eliminate T-cell recognition. Furthermore, sequence analyses revealed a new DPB1 allele designated DPB1*Oos.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M58608. The name DPB1*2001 has officially been assigned to the DPB*Oos allele by the WHO nomenclature Committee in March 1991. This follows the agreed policy that, subject to the conditions stated in the most recent Nomenclature Report (Bodmer et al. 1990b), names will be assigned as they are identified. Lists of such new names will be published in the following WHO nomenclature report.  相似文献   

9.
Most of the 119 human leukocyte antigen (HLA)-DPB1 alleles are defined by polymorphism in six hypervariable regions (HVRs) in exon 2 of the HLA-DPB1 gene. We investigated how DPB1 polymorphism is represented in the entire coding region. An RNA sequencing-based typing (SBT) approach was developed for the identification of HLA-DPB1 polymorphism from the 5′ untranslated region (UTR) through the 3′-UTR. B-cell lymphoblastoid cell lines, encoding 16 different DPB1 alleles, were studied. Results show additional HLA-DPB1 polymorphism in exons 1, 3, 4 and 5 and the 5′ and 3′-UTR. Four new HLA-DPB1 alleles were identified, DPB1*0502, DPB1*0602, DPB1*0802 and DPB1*0902, which have exon 2 sequences identical to other DPB1 alleles but differ in the extended region. The additional polymorphism represents two main polymorphic lineages in the DPB1 alleles. Among the HVRs in exon 2, only HVR F correlates with these two main lineages.  相似文献   

10.
We investigated the polymorphic second exon of the HLA-DPB1 and HLA-DRB1 genes, using in vitro DNA amplification by polymerase chain reaction (PCR) and oligonucleotide hybridization in 136 patients with early onset pauciarticular juvenile chronic arthritis (EOPA-JCA) and 199 healthy controls. The analysis of the HLA-DRB1 system revealed that most of the DRB1 alleles are not indifferent with respect to susceptibility to EOPA-JCA. There is a hierarchy of susceptible (DRB1*08, DR5), permissive (DRB1*01), moderately protective (DR2, DRB1*04), and protective (DRB1*07) alleles. In contrast, no hierarchy could be shown for the HLA-DPB1 system. DPB1*0201 was found to be susceptible. The relatively frequent alleles DPB1*0402 and DPB1*0401 seem to be indifferent. The associations with DPB1*0201, DR5, and DRB1*08 are independent of each other: that is to say they, are not brought about by linkage disequilibrium. The susceptible alleles DPB1*0201 and DR5 show evidence for interaction in the pathogenesis of EOPA-JCA. Interaction seems likely between DPB1*0201 and DRB1*08, DR5 and DRB1*08, or between DR6 and DRB1*08. The strongest interaction exists between DPB1*0201 and a common DQ factor associated with both DR5 and DRB1*08. Finally, we observed a hierarchy among the various marker combinations, where the risk of developing EOPA-JCA increases with the number of associated markers present in an individual.This work was supported by SFB217.The data presented here are part of the doctoral thesis of C. Paul.  相似文献   

11.
The human leukocyte antigen (HLA) genes exhibit the highest degree of polymorphism in the human genome. This high degree of variation at classical HLA class I and class II loci has been maintained by balancing selection for a long evolutionary time. However, little is known about recent positive selection acting on specific HLA alleles in a local population. To detect the signature of recent positive selection, we genotyped six HLA loci, HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1 in 418 Japanese subjects, and then assessed the haplotype homozygosity (HH) of each HLA allele. There were 120 HLA alleles across the six loci. Among the 80 HLA alleles with frequencies of more than 1%, DPB1*04∶01, which had a frequency of 6.1%, showed exceptionally high HH (0.53). This finding raises the possibility that recent positive selection has acted on DPB1*04∶01. The DPB1*04∶01 allele, which was present in the most common 6-locus HLA haplotype (4.4%), A*33∶03-C*14∶03-B*44∶03-DRB1*13∶02-DQB1*06∶04-DPB1*04∶01, seems to have flowed from the Korean peninsula to the Japanese archipelago in the Yayoi period. A stochastic simulation approach indicated that the strong linkage disequilibrium between DQB1*06∶04 and DPB1*04∶01 observed in Japanese cannot be explained without positive selection favoring DPB1*04∶01. The selection coefficient of DPB1*04∶01 was estimated as 0.041 (95% credible interval 0.021–0.077). Our results suggest that DPB1*04∶01 has recently undergone strong positive selection in Japanese population.  相似文献   

12.
The purpose of the present study is to ascertain whether the associations between HLA-DQB1*0201 and DQB1*0302 alleles and childhood diabetes depend on the presence of antibodies to human cytomegalovirus (CMV). A study of incident type I diabetes cases and parents was conducted in Santiago, Chile. HLA-DQB1 polymorphisms were determined in 85 case-parent trios (255 subjects), while the detection of CMV was carried out only in the incident cases. As expected, HLA-DQB1 polymorphisms are strongly associated with type I diabetes, with crude odds ratios of 3.7 (95% confidence interval (CI) 1.8-7.7) for the DQB1*0201 allele and 10.3 (95% CI 5.0-21.4) for the DQB1*0302 allele. In the subset of families with CMV+ cases, the odds ratios were estimated as 3.7 (95% CI 1.6-8.6) for the DQB1*0201 allele and 11.1 (95% CI 4.8-25.8) for the DQB1*0302 allele. In families with patients who tested negative for CMV antibodies, the odds ratios were calculated as 3.5 (95% CI 0.7-16.8) for the DQB1*0201 allele, and 8.0 (95% CI 1.8-34.7) for the DQB1*0302 allele. There was no evidence of statistical interaction between CMV antibodies and the DQB1*0201 allele (P value = 0.9) or the DQB1*0302 allele (P value = 0.7). In conclusion, alleles DQB1*0302 and DQB1*0201 do not display distinct associations with type I diabetes depending on the presence of antibodies for CMV.  相似文献   

13.
PCR amplification, oligonucleotide probe typing, and sequencing were used to analyze the HLA class II loci (DRB1, DQA1, DQB1, and DPB1) of an isolated South Amerindian tribe. Here we report HLA class II variation, including the identification of a new DRB1 allele, several novel DR/DQ haplotypes, and an unusual distribution of DPB1 alleles, among the Cayapa Indians (N = 100) of Ecuador. A general reduction of HLA class II allelic variation in the Cayapa is consistent with a population bottle-neck during the colonization of the Americas. The new Cayapa DRB1 allele, DRB1*08042, which arose by a G-->T point mutation in the parental DRB1*0802, contains a novel Val codon (GTT) at position 86. The generation of DRB1*08042 (Val-86) from DRB1*0802 (Gly-86) in the Cayapa, by a different mechanism than the (GT-->TG) change in the creation of DRB1*08041 (Val-86) from DRB1*0802 in Africa, implicates selection in the convergent evolution of position 86 DR beta variants. The DRB1*08042 allele has not been found in > 1,800 Amerindian haplotypes and thus presumably arose after the Cayapa separated from other South American Amerindians. Selection pressure for increased haplotype diversity can be inferred in the generation and maintenance of three new DRB1*08042 haplotypes and several novel DR/DQ haplotypes in this population. The DPB1 allelic distribution in the Cayapa is also extraordinary, with two alleles, DPB1*1401, a very rare allele in North American Amerindian populations, and DPB1*0402, the most common Amerindian DPB1 allele, constituting 89% of the Cayapa DPB1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Occupational exposure to small molecules, such as metals, is frequently associated with hypersensitivity reactions. Chronic beryllium (Be) disease (CBD) is a multisystem granulomatous disease that primarily affects the lung, and occurs in approximately 3% of individuals exposed to this element. Immunogenetic studies have demonstrated a strong association between CBD and possession of alleles of HLA-DP containing glutamic acid (Glu) at position 69 in the HLA-DP beta-chain. T cell clones were raised from three patients with CBD in whom exposure occurred 10 and 30 years previously. Of 25 Be-specific clones that were obtained, all were restricted by HLA-DP alleles with Glu at DP beta69. Furthermore, the proliferative responses of the clones were absolutely dependent upon DP beta Glu(69) in that a single amino acid substitution at this position abolished the response. As befits a disease whose pathogenesis involves a delayed type hypersensitivity response, the large majority of Be-specific clones secreted IFN-gamma (Th1) and little or no IL-4 (Th2) cytokines. This study provides insights into the molecular basis of DP2-associated susceptibility to CBD.  相似文献   

15.
A recent genome-wide association study (GWAS) suggested that polymorphisms in or around the genes HCP5, HLA-C and ZNRD1 confer restriction against HIV-1 viral replication or disease progression. Here, we also find that these alleles are associated with different aspects of HIV disease, albeit mainly in European Americans. Additionally, we offer that because the GWAS cohort was a subset of HIV-positive individuals, selected based in part on having a low viral load, the observed associations for viral load are magnified compared with those we detect in a large well-characterized prospective natural history cohort of HIV-1-infected persons. We also find that because of linkage disequilibrium (LD) patterns, the dominant viral load- and disease-influencing associations for the ZNRD1 or HLA-C and HCP5 alleles are apparent mainly when these alleles are present in HLA-A10- or HLA-B*57-containing haplotypes, respectively. ZNRD1 alleles lacking HLA-A10 did not confer disease protection whereas ZNRD1-A10 haplotypes did. When examined in isolation, the HCP5-G allele associates with a slow disease course and lower viral loads. However, in multivariate models, after partitioning out the protective effects of B*57, the HCP5-G allele associates with disease-acceleration and enhanced viral replication; these associations for HCP5-G are otherwise obscured because of the very strong LD between this allele and a subset of protective B*57 alleles. Furthermore, HCP5 and HLA-C alleles stratify B*57-containing genotypes into those that associate with either striking disease retardation or progressive disease, providing one explanation for the long-standing conundrum of why some HLA-B*57-carrying individuals are long-term non-progressors, whereas others exhibit progressive disease. Collectively, these data generally underscore the strong dependence of genotype-phenotype relationships upon cohort design, phenotype selection, LD patterns and populations studied. They specifically demonstrate that the influence of ZNRD1 alleles on disease progression rates are attributable to HLA-A10, help clarify the relationship between the HCP5, HLA-C and HLA-B*57 alleles, and reaffirm a critical role of HLA-B*57 alleles in HIV disease. Furthermore, as the protective B*57-containing genotypes convey striking salutary effects independent of their strong impact on viral control, it is conceivable that T cell-based therapeutic vaccine strategies aimed at reducing viral loads may be inadequate for limiting AIDS progression, raising the potential need for complementary strategies that target viral load-independent determinants of pathogenesis.  相似文献   

16.
HLA class I and class II associations were examined in relation to measles virus-specific cytokine responses in 339 healthy children who had received two doses of live attenuated measles vaccine. Multivariate linear regression modeling analysis revealed suggestions of associations between the expression of DPA1*0201 (p=0.03) and DPA1*0202 (p=0.09) alleles and interleukin-2 (IL-2) cytokine production (global p-value 0.06). Importantly, cytokine production and DQB1 allele associations (global p-value 0.04) revealed that the alleles with the strongest association with IL-10 secretion were DQB1*0302 (p=0.02), DQB1*0303 (p=0.07) and DQB1*0502 (p=0.06). Measles-specific IL-10 secretion associations approached significance with DRB1 and DQA1 loci (both global p-values 0.08). Specifically, suggestive associations were found between DRB1*0701 (p=0.07), DRB1*1103 (p=0.06), DRB1*1302 (p=0.08), DRB1*1303 (p=0.06), DQA1*0101 (p=0.08), and DQA1*0201 (p=0.04) alleles and measles-induced IL-10 secretion. Further, suggestive association was observed between specific DQA1*0505 (p=0.002) alleles and measles-specific IL-12p40 secretion (global p-value 0.09) indicating that cytokine responses to measles antigens are predominantly influenced by HLA class II genes. We found no associations between any of the alleles of HLA A, B, and Cw loci and cytokine secretion. These novel findings suggest that HLA class II genes may influence the level of cytokine production in the adaptive immune responses to measles vaccine.  相似文献   

17.
We studied HLA DQB1 allele frequencies and the relative risk (RR) of various genotypes in 72 type 1 diabetic patients and 40 control individuals in Uruguay. This is a tri-racial (Caucasian, Black and Indo-American) mixed population. The products of the polymerase chain reaction amplifications were hybridized with oligonucleotides by allele-specific oligonucleotide reverse or dot blot methods. Significant differences between these two groups were observed only for allele DQB1*0302 (35%, RR = 7.34, P<0.001). The frequency of the alleles carrying a non-aspartic acid residue at position 57 was significantly higher in the diabetic patients (85 vs 53%, P<0.001). In contrast, the frequency of Asp alleles was negatively associated with type 1 diabetes (RR = 0.20, P<0.001). The genotype DQB1*0302/DQB1*0201 (33%, RR = 5.41, P<0.05) was positively associated with this disease. The genotype frequencies associated with type 1 diabetes in our population were significantly different from what is known for Caucasian and Black populations as well as compared with another admixed population, from Chile.  相似文献   

18.
Sequence determination using HLA-DPB1 allele-specific primers for a DNA sample donated by an African-American individual revealed the presence of a novel haplotype. This new allele was found as a heterozygote together with HLA-DPB1*0402. The new allele was similar to HLA-DPB1*1601, however, it varied in two single nucleotide polymorphisms resulting in alanine residues at positions 55 and 56 of the mature protein rather than aspartic acid and glutamic acid, respectively. Allele-specific DNA-sequence determination was verified by sequence determination in forward and reverse directions after cloning in pCR2.1. This cloning strategy resulted in DNA products representing 19 clones confirming the novel allele (GenBank accession number AY823995 and is now listed in the IMGT/HLA database as HLA-DPB1*0403) and 17 clones representing HLA-DPB1*0402.  相似文献   

19.
We report here our analysis of HLA class II alleles in 180 Caucasian nuclear families with at least two children with insulin-dependent diabetes mellitus (IDDM). DRB1, DQA1, DQB1, and DPB1 genotypes were determined with PCR/sequence-specific oligonucleotide probe typing methods. The data allowed unambiguous determination of four-locus haplotypes in all but three of the families. Consistent with other studies, our data indicate an increase in DR3/DR4, DR3/DR3, and DR4/DR4 genotypes in patients compared to controls. In addition, we found an increase in DR1/DR4, DR1/DR3, and DR4/DR8 genotypes. While the frequency of DQB1*0302 on DR4 haplotypes is dramatically increased in DR3/DR4 patients, DR4 haplotypes in DR1/DR4 patients exhibit frequencies of DQB1*0302 and DQB1*0301 more closely resembling those in control populations. The protective effect of DR2 is evident in this data set and is limited to the common DRB1*1501-DQB1*0602 haplotype. Most DR2+ patients carry the less common DR2 haplotype DRB1*1601-DQB1*0502, which is not decreased in patients relative to controls. DPB1 also appears to play a role in disease susceptibility. DPB1*0301 is increased in patients (P < .001) and may contribute to the disease risk of a number of different DR-DQ haplotypes. DPB1*0101, found almost exclusively on DR3 haplotypes in patients, is slightly increased, and maternal transmissions of DRB1*0301-DPB1*0101 haplotypes to affected children occur twice as frequently as do paternal transmissions. Transmissions of DR3 haplotypes carrying other DPB1 alleles occur at approximately equal maternal and paternal frequencies. The complex, multigenic nature of HLA class II-associated IDDM susceptibility is evident from these data.  相似文献   

20.
The cellular immune response to respiratory syncytial virus (RSV) is important in both protection and immunopathogenesis. In contrast to HLA class I, HLA class II-restricted RSV-specific T-cell epitopes have not been identified. Here, we describe the generation and characterization of two human RSV-specific CD4(+)-T-cell clones (TCCs) associated with type 0-like cytokine profiles. TCC 1 was specific for the matrix protein and restricted over HLA-DPB1*1601, while TCC 2 was specific for the attachment protein G and restricted over either HLA-DPB1*0401 or -0402. Interestingly, the latter epitope is conserved in both RSV type A and B viruses. Given the high allele frequencies of HLA-DPB1*0401 and -0402 worldwide, this epitope could be widely recognized and boosted by recurrent RSV infections. Indeed, peptide stimulation of peripheral blood mononuclear cells from healthy adults resulted in the detection of specific responses in 8 of 13 donors. Additional G-specific TCCs were generated from three of these cultures, which recognized the identical (n = 2) or almost identical (n = 1) HLA-DP4-restricted epitope as TCC 2. No significant differences were found between the capacities of cell lines obtained from infants with severe (n = 41) or mild (n = 46) RSV lower respiratory tract infections to function as antigen-presenting cells to the G-specific TCCs, suggesting that the severity of RSV disease is not linked to the allelic frequency of HLA-DP4. In conclusion, we have identified an RSV G-specific human T helper cell epitope restricted by the widely expressed HLA class II alleles DPB1*0401 and -0402. Its putative role in protection and/or immunopathogenesis remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号