首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-660,711 (3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethyl amino-3-oxo propyl)thio)methyl)thio)propanoic acid is a potent and selective competitive inhibitor of [3H]leukotriene D4 binding in guinea pig (Ki value, 0.22 nM) and human (Ki value, 2.1 nM) lung membranes but is essentially inactive versus [3H]leukotriene C4 binding (IC50 value in guinea pig lung, 23 microM). Functionally it competitively antagonized contractions of guinea pig trachea and ileum induced by leukotriene (LT) D4 (respective pA2 values, 9.4 and 10.5) and LTE4 (respective pA2 values, 9.1 and 10.4) and contractions of human trachea induced by LTD4 (pA2 value, 8.5). L-660,711 (5.8 x 10(-8)M) antagonized contractions of guinea pig trachea induced by LTC4 in the absence (dose ratio = 28) but not in the presence of 45 mM L-serine borate (dose ratio less than 2). L-660,711 (1.9 x 10(-5)M) did not block contractions of guinea pig trachea induced by histamine, acetylcholine, 5-hydroxytryptamine, PGF2 alpha, U-44069, or PGD2. In the presence of atropine, mepyramine, and indomethacin, L-660,711 (1.9 x 10(-5)M) inhibited a small component of the response to antigen on guinea pig trachea but completely blocked anti-IgE-induced contractions of human trachea. L-660,711 (i.v.) antagonized bronchoconstriction induced in anesthetized guinea pigs by i.v. LTC4, LTD4, and LTE4 but did not block bronchoconstriction to arachidonic acid, U-44069, 5-hydroxytryptamine, histamine, or acetylcholine. Intraduodenal L-660,711 antagonized LTD4 (0.2-12.8 micrograms/kg)-induced bronchoconstriction in guinea pigs, and p.o. L-660,711 blocked LTD4- and Ascaris-induced bronchoconstriction in conscious squirrel monkeys and ovalbumin-induced bronchoconstriction in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile of L-660,711 indicates that it is a potent, selective, orally active leukotriene receptor antagonist which is well suited to determine the role played by LTD4 and LTE4 in asthma and other pathophysiologic conditions.  相似文献   

2.
The pharmacological properties of 7,7-Diphenyl-2 [1-imino-2 (2-methoxy-phenyl)-ethyl] perhydroisoindol-4-one (3 aR, 7 aR) or RP67580 are described. This compound, derived from a novel chemical family, is a potent and selective substance P (SP) antagonist, in vitro and in vivo. In vitro, it inhibited in a competitive manner (IC50 = 10 nM) 3H-SP binding in rat brain (NK1 receptors). It did not interact with the two other tachykinin receptor sites (NK2 and NK3) nor the other receptor sites tested. Moreover, RP67580 competitively antagonized the contractile activity of SP on guinea-pig ileum (pA2 = 7.16); in contrast, it was inactive in rabbit pulmonary artery and in rat portal vein tissues which contain NK2 and NK3 receptors, respectively. In vivo, in the rat, RP67580 inhibited the plasmatic extravasation induced by administration of SP (ED50 = 0.04 mg/kg i.v.) as well as that induced by antidromic stimulation of a peripheral sensory nerve (ED50 = 0.15 mg/kg i.v.). In mice and rats, RP67580, like morphine, potently blocked the nociceptive effects of phenylbenzoquinone and formalin; its antinociceptive effect does not involve opiate receptors since it was not reversed by naloxone. These results indicate that RP67580 is a particularly valuable tool for investigating the physiological and pathological role of SP.  相似文献   

3.
Using an in vitro microsuperfusion procedure, the NMDA-evoked release of [3H]ACh was studied after suppression of dopamine (DA) transmission (alpha-methyl-p-tyrosine) in striatal compartments of the rat. The effects of tachykinin neurokinin 1 (NK1) receptor antagonists and the ability of appropriate agonists to counteract the antagonist responses were investigated to determine whether tachykinin NK1 classic, septide-sensitive and/or new NK1-sensitive receptors mediate these regulations. The NK1 antagonists, SR140333, SSR240600, GR205171 but not GR82334 and RP67580 (0.1 and 1 microM) markedly reduced the NMDA (1 mm + D-serine 10 microM)-evoked release of [3H]ACh only in the matrix. These responses unchanged by coapplication with NMDA of NK2 or NK3 agonists, [Lys5,MeLeu9,Nle10]NKA(4-10) or senktide, respectively, were completely counteracted by the selective NK1 agonist, [Pro9]substance P but also by neurokinin A and neuropeptide K (1 nM each). According to the rank order of potency of agonists for counteracting the antagonist responses ([Pro9]substance P, 0.013 nM > neurokinin A, 0.15 nM > substance P(6-11) 7.7 nM = septide 8.7 nM), the new NK1-sensitive receptors mediate the facilitation by endogenous tachykinins of the NMDA-evoked release of ACh in the matrix, after suppression of DA transmission. Solely the NK1 antagonists having a high affinity for these receptors could be used as indirect anti-cholinergic agents.  相似文献   

4.
The effects of a newly synthesized PAF antagonist E6123, (S)-(+)-6-(2-chlorophenyl)-3-cyclopropanecarbonyl-8,11-dimethyl-2, 3,4,5- tetrahydro-8H-pyrido[4',3':4,5]thieno[3,2-f][1,2,4]triazolo [4,3-a][1,4]diazepine, on in vivo inhaled PAF-induced pulmonary changes were investigated. E6123 inhibited PAF inhalation-induced bronchoconstriction in guinea pigs with an ED50 value (p.o.) of 1.3 micrograms/kg which was lower than those of other PAF-antagonists such as WEB2347 (ED50 = 26 micrograms/kg) and Y-24180 (ED50 = 12 micrograms/kg). E6123 significantly inhibited PAF inhalation-induced eosinophil infiltration into the bronchiole and trachea, and bronchial hyperreactivity in guinea pigs after oral administration at 1 and 10 micrograms/kg, respectively. E6123 inhibited the PAF-induced increase in intracellular free calcium ion concentration ([Ca2+]i) in guinea pig eosinophils with an IC50 value of 14 nM. The present results suggest that E6123 may be beneficial for the treatment of asthma, in which PAF is assumed to be involved.  相似文献   

5.
RG 12525 was determined to be a specific, competitive and orally effective antagonist of the peptidoleukotrienes, LTC4, LTD4 and LTE4, in several assays utilizing guinea pigs. In vitro, RG 12525 competitively inhibited 3H-LTD4 binding to lung membranes (Ki = 3.0 +/- 0.3 nM) and competitively antagonized the spasmogenic activity of LTC4, LTD4 and LTE4 on lung strips (KB values = 3 nM) with greater than 8000 fold selectivity. In vivo, RG 12525 orally inhibited LTD4 induced wheal formation (ED50 = 5 mg/kg with a t1/2 = 10 hrs at 9 mg/kg), LTD4 induced bronchoconstriction (ED50 = 0.6 mg/kg), and anaphylactic death (ED50 = 2.2 mg/kg with a t1/2 = 7 hrs at 10 mg/kg) and antigen induced bronchoconstriction (ED50 = 0.6 mg/kg). RG 12525 represents a significant improvement in receptor affinity and oral efficacy and thus, is a valuable pharmacological tool to evaluate peptidoleukotrienes in allergic diseases.  相似文献   

6.
Neural circuits in the dorsal periaqueductal gray matter (dPAG) play an important role in the integration of defensive behavior. The neurokinin substance P causes conditioned place aversion when administered into this region. The present study examined whether these effects may be mimicked by its carboxy-terminal amino acid sequence and whether they are influenced by prior treatment with the tachykinin NK1 receptor antagonist WIN51,708. The behavioral testing apparatus is a circular open field consisting of 4 uniform quadrants that are equally preferred by the rats prior to drug treatments. For conditioning, rats received drug injections on three consecutive days and were placed into their assigned quadrant. The carboxy-terminal analog (17.5 pmol/0.2 microl) applied into the dPAG produced place aversion effects with reduced time spent in the drug-paired quadrant on the testing day. The effects of the carboxy-terminal analog was antagonized by pretreatment with WIN51,708 (20 mg/kg, i.p.). Microinjection of WIN51,708 (20 mg/kg, i.p.), by its own, did not produce significant effects. These findings suggest that previous reports showing conditioned place aversion effects of SP injected into the dPAG are encoded by its carboxy-terminal sequence and due to its action on tachykinin NK1 receptors.  相似文献   

7.
Discovery of novel, orally active dual NK1/NK2 antagonists   总被引:1,自引:0,他引:1  
Exploration of the SAR around selective NK2 antagonists, SR48968 and ZD7944, led to the discovery that naphth-1-amide analogues provide potent dual NK1 and NK2 antagonists. ZD6021 inhibited binding of [3H]-NKA or [3H]-SP to human NK1 and NK2 receptors, with high-affinity (K(i)=0.12 and 0.62nM, respectively). In functional assays ZD6021 had, at 10(-7)M, in human pulmonary artery pK(B)=8.9 and in human bronchus pK(B)=7.3, for NK1 and NK2, respectively. Oral administration of ZD6021 to guinea pigs dose-dependently attenuated ASMSP induced extravasation of plasma proteins, ED(50)=0.5mg/kg, and NK2 mediated bronchoconstriction, ED(50)=13mg/kg.  相似文献   

8.
Stable CHO cell clones which selectively express all three rat tachykinin receptors were established by transfection. The binding of radiolabled substance P and neurokinin A (substance K) to CHO clones expressing the NK1 and NK2 receptors, respectively, were saturatable and of high affinity (Kd = 0.17 nM (NK1); 3.4 nM (NK2)). Scatchard analysis of the binding data indicated for both receptors binding to a single population of binding sites, and competition binding studies showed that the binding specificities of the receptors corresponded to those of classical NK1 and NK2 receptors. In contrast, the binding of eledoisin to the NK3 receptor expressed in the transfected CHO cells was of low affinity (IC50 = 240 nM) compared to the high affinity of the receptor found when it was transiently expressed in COS-7 cells (IC50 = 8 nM). However, in both cases the receptor exhibited the specificity of a classical NK3 receptor. The established cell clones may provide an important tool for further analysis of the molecular mechanisms involved in binding, activation, and coupling of receptors for tachykinin peptides.  相似文献   

9.
L-649,923, Sodium (beta S*, gamma R*)-4-(3-(4-acetyl-3-hydroxy-2-propylphenoxy)propylthio)- gamma- hydroxy-beta-methylbenzenebutanoate is a selective and competitive inhibitor of [3H]leukotriene D4 (Ki value of 400 nM) and to a lesser extent [3H]leukotriene C4 (Ki value of 8.6 microM) binding in guinea-pig lung homogenates. Functionally, it selectively antagonized contractions of guinea pig trachea induced by leukotriene C4, D4, E4, and F4 but not those induced by acetylcholine, histamine, serotonin, prostaglandin F2 alpha, or U-44069 (stable endoperoxide analogue). Schild plot analysis indicated a competitive inhibition of contractions of guinea-pig ileum induced by leukotriene D4 (pA2 8.1) and contractions of guinea-pig trachea induced by leukotrienes E4 and F4 (pA2 7.1 and 6.9, respectively). In contrast, contractions of guinea-pig trachea induced by leukotrienes C4 (pA2 7.2; slope 0.6) and D4 (pA2 7.2; slope 0.7) were inhibited in a noncompetitive fashion. In vivo, intravenously administered L-649,923 selectively blocked bronchoconstriction induced in anesthetized guinea pigs by leukotriene C4 and D4 (ED50 values i.v. 0.38 and 0.26 mg/kg, respectively) but not that induced by histamine, arachidonic acid, serotonin, U-44069, or acetylcholine. Following intraduodenal administration, L-649,923, blocked leukotriene D4 induced bronchoconstriction (5 and 10 mg/kg). The present findings indicate that selective antagonists, such as L-649,923, may be useful for defining the role of leukotrienes in diseases such as bronchial asthma.  相似文献   

10.
The novel NK(1) receptor ligand Netupitant has been characterized in vitro and in vivo. In calcium mobilization studies CHO cells expressing the human NK receptors responded to a panel of agonists with the expected order of potency. In CHO NK(1) cells Netupitant concentration-dependently antagonized the stimulatory effects of substance P (SP) showing insurmountable antagonism (pK(B) 8.87). In cells expressing NK(2) or NK(3) receptors Netupitant was inactive. In the guinea pig ileum Netupitant concentration-dependently depressed the maximal response to SP (pK(B) 7.85) and, in functional washout experiments, displayed persistent (up to 5h) antagonist effects. In mice the intrathecal injection of SP elicited the typical scratching, biting and licking response that was dose-dependently inhibited by Netupitant given intraperitoneally in the 1-10mg/kg dose range. In gerbils, foot tapping behavior evoked by the intracerebroventricular injection of a NK(1) agonist was dose-dependently counteracted by Netupitant given intraperitoneally (ID(50) 1.5mg/kg) or orally (ID(50) 0.5mg/kg). In time course experiments in gerbils Netupitant displayed long lasting effects. In all the assays Aprepitant elicited similar effects as Netupitant. These results suggest that Netupitant behaves as a brain penetrant, orally active, potent and selective NK(1) antagonist. Thus this molecule can be useful for investigating the NK(1) receptor role in the control of central and peripheral functions. Netupitant has clinical potential in conditions such as chemotherapy induced nausea and vomiting, in which the blockade of NK(1) receptors has been demonstrated valuable for patients.  相似文献   

11.
Rimcazole (BW 234U) is a potential antipsychotic agent which in open-clinical trials appears to be effective in acute schizophrenic patients. In the present study, rimcazole was found to block the specific binding of [3H]-(+)-SKF 10,047 to sigma sites in rat and guinea pig brain (IC50 = 5.0 X 10(-7) M). The compound was 100 times weaker as a blocker of phencyclidine sites (IC50 = 4.3 X 10(-5) M). At 1 X 10(-5) M, rimcazole had only weak effects on mu, delta, kappa and epsilon opioid receptors. Scatchard analysis of the binding data from guinea pig brain revealed an apparent KD for [3H]-(+)-SKF 10,047 of 85 +/- 5 nM and a Bmax of 824 +/- 27 fmole/mg protein. In the presence of 5 X 10(-7) M BW 234U, the apparent KD was 165 +/- 35 nM, but the Bmax (892 +/- 146 fmoles/mg protein) was not affected. This suggests that rimcazole is a competitive inhibitor of sigma sites. The agent was also capable of blocking sigma sites in vivo (ID50 = 6 mg/kg i.p., mice) as judged by an in vivo sigma receptor binding assay. Thus, if the antipsychotic activity of rimcazole is confirmed in double-blind, placebo-controlled trials, it would be the first compound whose mechanism of antipsychotic activity may best be explained by a direct blockade of sigma sites and not by a direct blockade of dopamine (D2) receptors in brain.  相似文献   

12.
Verlukast (MK-679) (3-[(3-(2-(7-chloro-2-quinolinyl)-(E)-ethenyl)phenyl)[3-(dimethylamino)- 3- oxopropyl)thio)methyl)-thio)propionic acid) is a potent and selective inhibitor of [3H]leukotriene D4 binding in guinea-pig (IC50 = 3.1 +/- 0.5 nM) and human (IC50 = 8.0 +/- 3.0 nM) lung homogenates and dimethyl sulfoxide differentiated U937 cell membrane preparations (IC50 = 10.7 +/- 1.6 nM) but is essentially inactive versus [3H]leukotriene C4 binding in guinea-pig lung homogenates (IC50 values of 19 and 33 microM). Functionally, when tested at 60 nM, it antagonized contractions of guinea-pig trachea (GPT) induced by leukotriene C4, leukotriene D4, and leukotriene E4 (respective-log KB values of 8.6, 8.8, and 8.9) and contractions of human trachea (HT) induced by leukotriene D4 (-log KB value 8.3 +/- 0.2). In contrast, verlukast (20-200 nM) failed to antagonize contractions of GPT induced by leukotriene C4 in the presence of 45 mM L-serine borate. Intravenous (i.v.) and aerosol verlukast antagonized bronchoconstriction (BC) induced in anaesthetized guinea pigs by i.v. leukotriene D4 but did not block BC to arachidonic acid or histamine. Intraduodenal verlukast (0.25 mg/kg) antagonized leukotriene D4 (0.2 micrograms/kg) induced BC in guinea pigs. Oral and aerosol administration blocked leukotriene D4-induced BC in conscious squirrel monkeys. Orally administered compound also blocked ovalbumin-induced BC in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile for verlukast is similar to that of the racemic compound, MK-571. Verlukast is currently in clinical development for the treatment of asthma and related diseases.  相似文献   

13.
H Wachtel  W Kehr  G Sauer 《Life sciences》1983,33(26):2583-2597
2-Bromolisuride (2-Br-LIS), a derivative of the ergot dopamine (DA) agonist lisuride, was investigated in rodents in comparison with the DA antagonist haloperidol with regard to its influence on DA related behaviour, cerebral DA metabolism and prolactin (PRL) secretion. 2-Br-LIS produced catalepsy in mice (ED50 3.3 mg/kg i.p.), antagonized apomorphine-induced stereotypies in mice (ED50 0.4 mg/kg i.p.), antagonized DA agonist-induced stereotypies in rats (0.1-1.56 mg/kg i.p.), inhibited locomotor activity in rats (0.025-6.25 mg/kg i.p.), antagonized the hyperactivity produced by various DA agonists in rats (0.025-6.25 mg/kg i.p.) and inhibited the apomorphine-induced hypothermia in mice (0.05-0.78 mg/kg i.p.). 2-Br-LIS (0.03-10 mg/kg i.p.) stimulated DA biosynthesis and DOPAC formation in the striatum and DA rich limbic system of rats, but had no effect on serotonin turnover. In striatum and limbic forebrain of gamma-butyrolactone-pretreated rats 2-Br-LIS reversed the apomorphine-induced inhibition of DOPA accumulation. 2-Br-LIS (0.03 - 3 mg/kg) enhanced PRL secretion in intact male rats. These findings indicate DA antagonistic properties of 2-Br-LIS presumably due to blockade of central pre- and postsynaptic DA receptors being of approximately the same order of potency as haloperidol. 2-Br-LIS is the first ergot compound with definite antidopaminergic properties suggesting its potential usefulness as a neuroleptic.  相似文献   

14.
Tachykinins stimulate motility whereas NO inhibits motility in the gastrointestinal tract. AIM: To investigate if inhibition of NO production sensitizes myoelectric activity to subthreshold doses of tachykinins in the small intestine of awake rats. METHODS: Rats were supplied with a venous catheter and bipolar electrodes at 5, 15 and 25 cm distal to pylorus for electromyography of small intestine. The motor responses were evaluated using pattern recognition. Substance P and neurokinin A dose-dependently stimulated gut motility, with neurokinin A being more potent than substance P. Therefore, neurokinin A was chosen and administered under baseline conditions and 45-60 min after N(omega)-nitro-L-arginine (L-NNA) 1 mg kg(-1), with or without pretreatment with L-arginine 300 mg kg(-1). In addition, myoelectric activity effects of neurokinin A in conjunction with L-NNA were studied before and after administration of the tachykinin receptor antagonists, SR140333 (NK1), SR48968 (NK2) and SR142801 (NK3), each at 2.5 mg kg(-1). RESULTS: Dose-finding studies verified 10 pmol kg(-1) min(-1) to be the threshold dose at which NKA caused phase II-like activity in a low percentage of experiments (12%, n=41). This dose was therefore used in combination with L-NNA for sensitization experiments of gut myoelectric activity. In experiments where NKA-induced no response, pretreatment with L-NNA led to phase II-like activity in 9 of 18 (50%, p<0.05) experiments. Co-administration of SR140333 and SR48968 abolished this effect. CONCLUSION: NO counteracts the stimulatory effect of tachykinins on small bowel myoelectric activity in the rat. Inhibition of the L-arginine/NO pathway sensitizes the gut to tachykinin-stimulated motor activity.  相似文献   

15.
In the guinea pig isolated perfused lung, we have examined the relationship between the effects of capsaicin and neuropeptide release and the possible existence of an axon reflex arrangement. Bolus injections into the pulmonary artery of capsaicin (1-100 pmol), substance P (10-1,000 pmol), and neurokinin (NK) A (10-100 pmol) produced a concentration-dependent bronchoconstriction, whereas calcitonin gene-related peptide (CGRP, 20-40 nmol) was without effect. Repeated administration of capsaicin at 40- to 60-min intervals was not associated with tachyphylaxis. These data support the presence of a NK2- (or NKA) type of tachykinin receptor in the guinea pig airways. Tetrodotoxin (0.3-3 microM) inhibited the effect of capsaicin, indicating that an axon reflex was operant. Capsaicin increased overflow of CGRP-like immunoreactivity (-LI) and NKA-LI, the latter only during concurrent infusion of the enkephalinase inhibitor phosphoramidon (3 microM). Phosphoramidon also increased overflow of CGRP-LI, suggesting that both NKA and CGRP were catabolized by a similar enzyme. The purine nucleoside adenosine did not cause any detectable overflow of CGRP-LI, indicating that neuropeptides may not be involved in adenosine-evoked bronchoconstriction and that bronchoconstriction per se does not induce neuropeptide overflow. Capsaicin and NKA had only minor effects on buffer flow, whereas substance P produced pulmonary vasoconstriction. These data clearly demonstrate that capsaicin acts via an axon reflex in the guinea pig airways. Supramaximal concentrations of capsaicin are needed to detect neuropeptide overflow, but the possibility exists that released neuropeptides mediate its effects.  相似文献   

16.
ONO-4057(5-[2-(2-Carboxyethyl)-3-[6-(4-methoxyphenyl)-5E- hexenyl]oxyphenoxy]valeric acid), an orally active leukotriene B4(LTB4) antagonist, displaced the binding of [3H] LTB4 to the LTB4 receptor in human neutrophil (Ki = 3.7 +/- 0.9 nM). ONO-4057 inhibited the LTB4-induced rise in cytosolic free calcium (the concentration causing 50% inhibition (IC50) = 0.7 +/- 0.3 microM) and inhibited human neutrophil aggregation, chemotaxis or degranulation induced by LTB4 (IC50 = 3.0 +/- 0.1, 0.9 +/- 0.1 and 1.6 +/- 0.1 microM) without showing any agonist activity at concentration up to 30 microM. ONO-4057 did not inhibit fMLP or C5a-induced neutrophil activation at concentrations up to 30 microM. In the in vivo study, ONO-4057 given orally, prevented LTB4-induced transient neutropenia or intradermal neutrophil migration in guinea pig (the dose causing 50% efficacy (ED50) = 25.6mg/kg or 5.3mg/kg). Furthermore, ONO-4057 given topically, suppressed phorbol-12-myristate-13-acetate (PMA)-induced neutrophil infiltration in guinea pig ear (the effective dose = 1 mg/ear). These results indicate that ONO-4057 is a selective and orally active LTB4 antagonist and may be a potential candidate for the treatment of various inflammatory diseases.  相似文献   

17.
The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, acetylation, and gene expression, using qRT-PCR, in a hypothalamic cell line (CLU 209) that expresses the NK3R. Senktide (1 nM, 10 nM) caused a relaxation of chromatin, an increase in global acetylation of histone H3 and H4, and an increase in the expression of a common set of genes involved in cell signaling, cell growth, and synaptic plasticity. Pretreatment with histone acetyltransferase (HAT) inhibitor (garcinol and 2-methylene y-butylactone), that inhibits p300, p300/CREB binding protein (CBP) associated factor (PCAF), and GCN 5, prevented the senktide-induced increase in expression of most, but not all, of the genes upregulated in response to 1 nM and 10 nM senktide. Treatment with 100 nM had the opposite effect: a reduction in chromatin relaxation and decreased acetylation. The expression of four genes was significantly decreased and the HAT inhibitor had a limited effect in blocking the upregulation of genes in response to 100 nM senktide. Activation of the NK3R appears to recruit multiple pathways, including acetylation, and possibly histone deactylases, histone methylases, or DNA methylases to affect chromatin structure and gene expression.  相似文献   

18.
The role of the tachykinin neurokinin (NK)(2) receptors on rabbit distal colon propulsion was investigated by using two selective NK(2)-receptor antagonists, MEN-10627 and SR-48968. Experiments on colonic circular muscle strips showed that contractile responses to [beta-Ala(8)]NKA-(4-10) (1 nM-1 microM), a selective NK(2)-receptor agonist, were competitively antagonized by MEN-10627 (1-100 nM), whereas SR-48968 (0.1-10 nM) caused an insurmountable antagonism, thus confirming the difference in the mode of action of the two compounds. Colonic propulsion was elicited by distending a mobile rubber balloon with 0.3 ml (submaximal stimulus) or 1.0 ml (maximal stimulus) of water. The velocity of anal displacement of the balloon (mm/s) was considered the main propulsion parameter. At low concentrations (1.0-100 nM and 0.1-10 nM, respectively), MEN-10627 and SR-48968 facilitated the velocity of propulsion, whereas at high concentrations (100 nM and 1 microM, respectively) they decelerated propulsion. The excitatory and inhibitory effects of both antagonists were observed only with submaximal stimulus. We focused on the hypothesis that the facilitatory effect on propulsion may result from blockade of neuronal NK(2) receptors and the inhibitory effect from suppression of the excitatory transmission mediated by NK(2) receptors on smooth muscle cells. In the presence of N(G)-nitro-L-arginine (300 microM), a nitric oxide synthase inhibitor, MEN-10627, at a concentration (10 nM) that was found to accelerate propulsion in control experiments inhibited the velocity of propulsion. In the presence of threshold (1-10 nM) or full (1 microM) concentration of atropine, which inhibited to a great extent the velocity of propulsion, the inhibitory effect of MEN-10627 (1 microM) was markedly increased. In conclusion, in the rabbit distal colon NK(2) receptors may decelerate propulsion by activating a nitric oxide-dependent neuronal mechanism and may accelerate it by a postjunctional synergistic interaction with cholinergic muscarinic receptors.  相似文献   

19.
L-670,596 ((-)6,8-difluoro-9-rho-methylsulfonyl benzyl-1,2,3,4- tetrahydrocarbazol-1-yl-acetic acid) has been shown to be a potent receptor antagonist as evidenced by the inhibition of the binding of 125I-labeled PTA-OH to human platelets (IC50, 5.5 x 10(-9) M), inhibition of U-44069 induced aggregation of human platelet rich plasma (IC50, 1.1 x 10(-7) M), and competitive inhibition of contractions of the guinea pig tracheal chain induced by U-44069 (pA2,9.0). The compound was also active in vivo as shown by inhibition of arachidonic acid and U-44069 induced bronchoconstriction in the guinea pig (ED50 values, 0.04 and 0.03 mg/kg i.v., respectively), U44069 induced renal vasoconstriction in the pig (ED50, 0.02 mg/kg i.v.), and inhibition of ex vivo aggregation of rhesus monkey platelets to U-44069 (active 1-5 mg/kg p.o.). The selectivity of the compound was indicated by the failure to inhibit, first, ADP-induced human or primate platelet aggregation and, second, bronchoconstriction in the guinea pig in vivo and contraction of the guinea pig tracheal chain in vitro to a variety of agonists. It is concluded that L-670,596 is a potent, selective, orally active thromboxane A2/prostaglandin endoperoxide receptor antagonist.  相似文献   

20.
The neurokinin A analogue, MDL 28,564 (Asp-Ser-Phe-Val-Gly-Leu-CH2NH-Leu-NH2), inhibited 125I-NKA binding to hamster urinary bladder NK2 receptors with a KI of 130 nM. For rat submaxillary gland NK1 receptors and cerebral cortical NK3 receptors, the KI's for MDL 28,564 were greater than 250 microM and greater than 500 microM, respectively. MDL 28,564 did not relax dog carotid artery (NK1 tissue) or contract rat portal vein (NK3 tissue). In guinea-pig trachea tissues, MDL 28,564 stimulated phosphatidylinositol turnover and induced contraction with maximum effects similar to those of neurokinin A. In hamster urinary bladder tissue, MDL 28,564 stimulated phosphatidylinositol turnover with maximum effect only 10% of that of neurokinin A, did not produce sustained contraction itself and antagonized NKA-induced contraction. MDL 28,564 also produced full contraction in rabbit pulmonary artery (NK2 tissue) but was inactive in rat vas deferens (NK2 tissue). These data with MDL 28,564 are consistent with the NK2 receptors in guinea-pig trachea and rabbit pulmonary artery being different from those in hamster urinary bladder and rat vas deferens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号