首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of primaquine treatment on antioxidant enzyme activities were investigated in rat liver and kidney. Male Sprague-Dawley rats were treated with 0.21 mg/kg daily for two weeks (chronic treatment) or a single dose at 0.21 or 0.63 mg/kg. Antioxidant enzyme activities were determined in liver and kidney cytosolic fractions whereas glutathione (GSH) and malondialdehyde (MDA) levels were determined in tissue samples. Results for the liver showed increases in cytosolic superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzymatic activities after chronic primaquine treatment. Levels of MDA, a marker for lipid peroxidation, were also increased by more than 50% indicating enhanced oxidative damage in the liver. In the single dose study, 0.63 mg/kg primaquine caused a more than 100% increase in liver SOD and a 36% increase in NAD (P) H: quinone oxidoreductase (NQOR) activities. Results for the kidney, however, showed fewer primaquine-induced changes in antioxidant enzyme activities when compared to the liver in both the chronic and single dose studies. Overall, our results indicate that primaquine treatment causes an oxidative stress in the two rat organs. These results are consistent with the known pro-oxidant effects of primaquine in vivo, and supplement current knowledge on the effects of antimalarial drugs on various enzyme systems.  相似文献   

2.
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Even though Cu is essential to life, it can become toxic to cells, at elevated tissue concentrations. Oxidative damage due to Cu has been reported in recent studies in various tissues. In this study, we aimed to determine the effect of excess Cu on oxidative and anti-oxidative substances in brain tissue in a rat model. Sixteen male Wistar albino rats were divided into two groups: the control group, which was given normal tap water, and the experimental group, which received water containing Cu in a dose of 1 g/l. All rats were sacrificed at the end of 4 wk, under ether anesthesia. Cu concentration in the liver and in plasma alanine aminotransferase (ALT) and aspartate transaminase (AST) activities were determined. There were multiparameter changes with significant ALT and AST activity elevation and increased liver Cu concentration. In brain tissue, Cu concentration, superoxide dismutase (SOD) activities, malondialdehyde (MDA) levels and glutathione (GSH) concentrations were determined. Brain Cu concentration was significantly higher in rats receiving excess Cu, compared with control rats (p < 0.05). Our results showed that SOD activities and GSH levels in brain tissue of the Cu-intoxicated animals were significantly lower than in the control group (p < 0.01 and p < 0,001, respectively). The brain MDA levels were found to be significantly higher in the experimental group than in the control group (p < 0.001). The present results indicate that excessive Cu accumulation in the brain depressed SOD activities and GSH levels and resulted in high MDA levels in brain homogenate due to the lipid peroxidation induced by the Cu overload.  相似文献   

3.
Diets high in fish oil containing polyunsaturated fatty acids of the n-3 family. have been suggested to decrease the risk of cardiovascular disease. However these lipids are highly susceptible to oxidative deterioration. In order to investigate the influence of n-3 fatty acids on oxidative status, the effect of feeding rats with fish oil or cocunut oil diets was studied by measuring different parameters related to an oxidative free radical challenge. Synthetic diets containing 15% (w/v) fish oil or coconut oil were used to feed growing rats for 4 weeks. As compared to control diet, the fish oil containing diet produced a significant decrease of cholesterol and triglyceride concentration in serum. however there was a significant increase in lipid peroxidation products. In addition, in fish oil fed animals, there was also a decrease in vitamin E and A concentration. Furthermore, the rate of lipid peroxidation in isolated microsomes was three fold higher in rats fed fish oil as compared to rats with coconut oil diet. No significant differences between the two experimental groups were observed in superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) activities. However, there was a decrease in glutathione peroxidase (GPX) activity. These results suggest that fish oil feeding at an amount compatible with human diet, although decreasing plasma lipids, actually challenge the antioxidant defence system, thus increasing the susceptibility of tissues to free radical oxidative damage.  相似文献   

4.
《Free radical research》2013,47(1):147-152
Diets high in fish oil containing polyunsaturated fatty acids of the n-3 family. have been suggested to decrease the risk of cardiovascular disease. However these lipids are highly susceptible to oxidative deterioration. In order to investigate the influence of n-3 fatty acids on oxidative status, the effect of feeding rats with fish oil or cocunut oil diets was studied by measuring different parameters related to an oxidative free radical challenge. Synthetic diets containing 15% (w/v) fish oil or coconut oil were used to feed growing rats for 4 weeks. As compared to control diet, the fish oil containing diet produced a significant decrease of cholesterol and triglyceride concentration in serum. however there was a significant increase in lipid peroxidation products. In addition, in fish oil fed animals, there was also a decrease in vitamin E and A concentration. Furthermore, the rate of lipid peroxidation in isolated microsomes was three fold higher in rats fed fish oil as compared to rats with coconut oil diet. No significant differences between the two experimental groups were observed in superoxide dismutase (SOD) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) activities. However, there was a decrease in glutathione peroxidase (GPX) activity. These results suggest that fish oil feeding at an amount compatible with human diet, although decreasing plasma lipids, actually challenge the antioxidant defence system, thus increasing the susceptibility of tissues to free radical oxidative damage.  相似文献   

5.
It is well known that reperfusion damage of ischemic myocardium may be attributed to alterations in the antioxidant defense system against free radical aggression. In addition, the degree of myocardial damage may depend on the duration and severity of ischemia that precedes reperfusion. We carried out serial ischemic experiments (10, 30, 60 and 120 min) in ex-vivo rat hearts followed by 30 min reperfusion and we assayed the glutathione-dependent enzymatic activities (selenium-dependent glutathione-peroxidase: GSH-Px; selenium-independent glutathione peroxidase: GST-Px; glutathione-transferase: GST and glutathione-reductase: GS-SG-Red), Catalase activity (CAT) and non-proteic thiol compounds (NP-SH) at the end of reperfusion. We found a significant reduction of NP-SH, GSH-Px and CAT in ischemic/ reperfused hearts from 30 min on, while GST activity was increased. In addition, we observed the appearance of a selenium-independent glutathione peroxidase activity (GST-Px) belonging to the GST system. In conclusion, we found the longer the duration of ischemia the greater the inbalance between the myocardial antioxidant system especially the GST activation, suggesting in particular for GST-Px, a role in the control of the damage against oxygen toxicity during ischemia/reperfusion.  相似文献   

6.
The antioxidant response of four freshwater microalgal species, Chlorella vulgaris Beij., Scenedesmus platydiscus (G. M. Smith) Chod., Scenedesmus quadricauda(Turp.) Bréb., and Selenastrum capricornutum Printz without pyrene addition (control) and at two pyrene concentrations (0.1 and 1.0 mgL−1) were investigated. Under the control condition, the values of the antioxidant parameters differed significantly among species and the difference was seemed not to be related to their susceptibility to pyrene. The antioxidant response to pyrene treatments also varied from species to species. Pyrene led to a significant increase in total glutathione (GSH) content in all species except C. vulgaris, a species did not exhibit any ability to metabolize pyrene. The glutathione-S-transferase (GST) activities also remained unchanged in pyrene treated C. vulgaris, increased greatly in S. platydiscus and Se. capricornutum (the two species with higher pyrene metabolism ability), but inhibited remarkably in S. quadricauda (the only species sensitive to pyrene toxicity). On the other hand, the glutathione reductase (GR) activities increased in C. vulgaris but remained at a similar level as the control in the other three species. The malondialdehyde (MDA) content, an indicator of lipid peroxidation, declined in S. quadricauda but showed no significant change in the other three species. The activities of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) in pyrene treated cells remained almost the same as the controls for all microalgal species. Results suggested that the alterations of antioxidant systems in microalgae might not be useful indicators of pyrene exposure but pyrene-enhanced GSH metabolism might be important in pyrene biotransformation.  相似文献   

7.
Thyroid Hormone Influences Antioxidant Defense System in Adult Rat Brain   总被引:2,自引:0,他引:2  
The objective of the current study was to find out whether thyroid hormone influences antioxidant defense parameters of rat brain. Several oxidative stress and antioxidant defense parameters of mitochondrial (MF) and post-mitochondrial (PMF) fractions of cerebral cortex (CC) of adult rats were compared among euthyroid (control), hypothyroid [6-n-propylthiouracil (PTU)-challenged], and hyperthyroid (T3-treatment to PTU-challenged rats) states. Oxidative stress parameters, such as thiobarbituric acid-reactive substances (TBA-RS) and protein carbonyl content (PC), in MF declined following PTU challenge in comparison to euthyroid rats. On the other hand, when PTU-challenged rats were treated with T3, a significant increase in the level of oxidative stress parameters in MF was recorded. Hydrogen peroxide content of MF as well as PMF of CC was elevated by PTU-challenge and brought to normal level by subsequent treatment of T3. Although mitochondrial glutathione (reduced or oxidized) status did not change following PTU challenge, a significant reduction in oxidized glutathione (GSSG) level was noticed in PMF following the treatment. T3 administration to PTU-challenged rats had no effect on mitochondrial glutathione status. Total and CN-resistant superoxide dismutase (SOD) activities in MF of CC augmented following PTU challenge. CN-resistant SOD activity did not change when PTU-challenged rats were treated with T3. Although CN-sensitive SOD activity of PMF remained unaltered in response to PTU challenge, its activity increased when PTU-challenged rats were treated with T3. Catalase activity in PMF of CC of PTU-challenged rats increased, whereas the activity was decreased when hypothyroid rats were treated with T3. Similarly, total and Se-dependent glutathione peroxidase (GPx) activities of MF increased following PTU challenge and reduced following administration of T3. Se-independent GPx activity of MF and PMF and glutathione reductase activity of PMF decreased following PTU challenge and did not change further when rats were treated with T3. On the other hand, glutathione S-transferase activity of MF and PMF of CC did not change following PTU challenge but decreased below detectable level following T3 treatment. Results of the current investigation suggest that antioxidant defense parameters of adult rat brain are considerably influenced by thyroid states of the body.  相似文献   

8.
BACKGROUND AND AIMS: Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. METHODS: Two tomato (Solanum lycopersicum) cultivars ('Kosaco' and 'Josefina') were subjected to 0.05 (control), 0.5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H(2)O(2); malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. KEY RESULTS: The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H(2)O(2) in the leaves of the two cultivars, these trends being more pronounced in 'Josefina' than in 'Kosaco'. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in 'Kosaco'. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. CONCLUSIONS: High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell-Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress.  相似文献   

9.
Diabetes Mellitus (DM), a state of chronic hyperglycaemia, is a common disease affecting over 124 million individuals worldwide. In this study, erythrocyte glutathione levels, lipid peroxidation, superoxide dismutase, catalase, and glutathione peroxidase and some extracellular antioxidant protein levels of patients with type II diabetes mellitus and healthy controls were investigated. Thirty-eight patients (21 males; with age of mean +/- SD, 53.1+/-9.7 years) and 18 clinically healthy subjects (10 males; with age of mean +/- SD, 49.3+/-15.2 years) were included in the study. Levels of erythrocyte lipid peroxidation, serum ceruloplasmin and glucose levels, HbA1C levels, and erythrocyte catalase activity were significantly increased, whereas serum albumin and transferrin levels, erythrocyte glutathione levels, and glutathione peroxidase activity were significantly decreased compared to those of controls. There was no significant difference in superoxide dismutase activity compared to controls. The results suggest that the antioxidant deficiency and excessive peroxide-mediated damage may appear in non-insulin dependent diabetes mellitus.  相似文献   

10.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

11.
The objective of this study is to determine the effect of lead (pb) on antioxidant enzymes and lipid peroxidation products in different regions of rat brain. Wistar male rats were treated with lead acetate (500 ppm) through drinking water for a period of 8 weeks. Control animals were maintained on sodium acetate. Treated and control rats were sacrificed at intervals of 1st, 4th and 8th week and the whole brains were dissected on ice into four regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem. Antioxidant enzymes namely catalase and superoxide dismutase in all the four regions of brain were determined. In addition, lipid peroxidation products were also estimated. The results indicated a gradual increase in the activity of antioxidant enzymes in different regions of the brain and this response was time-dependent. However, the increase was more in the cerebellum and the hippocampus compared to other regions of the brain. The lipid peroxidation products also showed a similar trend suggesting increased effect of lead in these two regions of the brain. The data indicated a region-specific oxidative stress in the brain exposed to lead.  相似文献   

12.
Husain  K.  Morris  C.  Whitworth  C.  Trammell  G.L.  Rybak  L.P.  Somani  S.M. 《Molecular and cellular biochemistry》1998,178(1-2):127-133
This study was designed to investigate the cisplatin-induced alteration in renal antioxidant system and the nephroprotection with ebselen. Male Wistar rats were injected with (1) vehicle control; (2) cisplatin; (3) ebselen; and (4) cisplatin plus ebselen. Rats were sacrificed three days post-treatment and plasma as well as kidney were isolated and analyzed. Plasma creatinine increased 598% following cisplatin administration alone which decreased by 158% with ebselen pretreatment. Cisplatin-treated rats showed a depletion of renal glutathione (GSH) levels (52% of control), while cisplatin plus ebselen injected rats had GSH values close to the controls. Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities decreased 38, 75 and 62% of control, respectively, and malondialdehyde (MDA) levels increased 174% of control following cisplatin administration, which were restored to control levels after ebselen treatment. The renal platinum level did not significantly change with ebselen pretreatment. This study suggests that the protection offered by ebselen against cisplatin-induced nephrotoxicity is partly related to the sparing of antioxidant system.  相似文献   

13.
Hexachlorocyclohexane (HCH) is reported to induce oxidative stress in liver and testis of rat. With an objective to examine its effect on brain tissue acute toxicity of HCH (10 and 20 mg/kg body wt, i.p.) on the antioxidant defense system of cerebral hemisphere of rat was evaluated. Lipid peroxidation (LPX) was elevated after 24 h in the crude homogenate and sub-cellular fractions (nuclear and mitochondrial) except the microsomal fraction in which LPX was induced after 6 h and remained elevated till 24 h. The pesticide elicited decrease in the activities of cytosolic total, CN-sensitive (not at 24 h) and CN-resistant superoxide dismutases; total, Se-dependent and Se-independent glutathione peroxidases; and catalase throughout the measurement period. In contrast, glutathione reductase activity was elevated till 24 h after a fall at 6 h of pesticide exposure. Cerebral contents of glutathione and ascorbic acid were decreased in response to HCH. The results suggest the possible involvement of reactive oxygen species in the mechanism of HCH-induced neurotoxicity in rat.  相似文献   

14.
Eicosapentaenoic acid (EPA) is one of the major dietary polyunsaturated fatty acids and induces apoptosis in several cancer cells. In this study, the EPA induced lipid peroxidation and response of antioxidative enzymes have been investigated in rat pheochromocytoma PC12 cells to elucidate the mechanisms of apoptosis induced by the polyunsaturated fatty acid EPA. We have analyzed superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and glutathione (GSH) contents in PC12 cells after exposure to different concentrations of EPA. Lipid peroxidation was shown to increase in the presence of EPA as an indication of the oxidative damage. Lipid peroxidation was enhanced by EPA in a dose-dependent manner, and the loss of cell viability was partially reversed by vitamin E. In the case of antioxidant enzyme activities, SOD and GPX activities and GSH contents increased significantly at 50 μmol/L EPA and were respectively 2.41-fold (p < 0.01), 3.49-fold (p < 0.05), and 1.43-fold (p < 0.05) higher than controls. The CAT activity at 10 μmol/L had the highest value and was increased by 25.83% (p < 0.05) compared to control. The results suggest that in PC12 cells the mechanism of apoptosis induced by EPA may be partly due to lipid peroxidation.  相似文献   

15.
Antioxidant enzyme alterations in experimental and clinical diabetes   总被引:6,自引:0,他引:6  
Previous studies from our laboratory have demonstrated the presence of complex alterations in the activities of antioxidant enzymes in various tissues of rats with streptozotocin (STZ)-induced diabetes. In the present investigation, it is shown that rats made diabetic with alloxan (ALX), an agent differing from STZ both chemically and in its mechanism of diabetogenesis, show virtually identical tissue antioxidant enzyme changes which, as is the case with STZ, are preventable by insulin treatment. The finding that the patterns of antioxidant enzyme alterations in chemically-induced diabetes are independent of the diabetogenic agent used and the presence of similar abnormalities in tissues of spontaneously diabetic (BB) Wistar rats (particularly when diabetic control is less than optimal) suggest that the changes observed are a characteristic feature of the uncontrolled diabetic state and that these may be responsible for (or predispose to) the development of secondary complications in clinical diabetes. Comparative studies involving red cells of diabetic rats and human diabetics revealed a number of common changes, namely an increase in glutathione reductase activity, a decreased susceptibility to oxidative glutathione depletion (which was related to the presence of hyperglycemia) and an increased production of malondialdehyde (an indirect index of lipid peroxidation) in response to in vitro challenge with hydrogen peroxide. In the diabetic patients, the extent of this increase in susceptibility of red cell lipids to oxidation paralleled the severity of diabetic complications. Our results suggest that increased (or uncontrolled) oxidative activity may play an important role in the pathogenesis of complications associated with the chronic diabetic state.This work was supported by grants from the British Columbia Health Care Research Foundation and the Canadian Diabetes Association.  相似文献   

16.
An imbalance between oxidative stress and antioxidative capacity may play an important role in the development and progression of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD). We carried out a study to assess the systemic oxidant–antioxidant status during the exacerbation and the stable period in patients with BA and COPD. A total of 33 patients, 16 with BA and 17 with COPD were included in the study. During the exacerbation and the stable periods, levels of malondialdehyde (MDA), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH‐Px), glutathione reductase (GRd), and catalase (CAT) in erythrocytes and serum melatonin concentrations were investigated. Blood counts, respiratory functions, and blood gases of the patients were also performed. During an exacerbation period of BA, despite the decreases in GSH‐Px, GRd and melatonin levels, MDA and CAT levels, and the white blood cell count, the percentage of eosinophils were significantly higher than in the stable period. Also, it was found that FEV1/L (where FEV1 is the forced expiratory volume in 1 s), FVC/L (where FVC is forced vital capacity), PEF/L/s (where PEF is peak expiratory flow), pO2 (where pO2 is oxygen pressure) levels increased during the stable period in patients with BA. MDA and SOD values were higher in the exacerbation period than in the stable period although GSH‐Px, GRd, melatonin, pH, and pO2 values were lower in the exacerbation period than in the stable period. The blood counts and the respiratory function tests did not change between the exacerbation and the stable period of patients with COPD significantly. In conclusion, we observed that oxidative stress in the exacerbation period of patients with BA and COPD increased whereas the antioxidant enzymes and melatonin values reduced. The episodes of BA or COPD might be associated with elevated levels of oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
红葡萄酒对大鼠肝脏抗氧化酶和脂质过氧化的影响   总被引:1,自引:0,他引:1  
选用雄性SD大鼠,分别灌胃红葡萄酒、酒精及水。实验90 d中每隔30 d处死一批动物,测定大鼠肝脏匀浆组织中的超氧化物歧化酶(Superoxide dismutase SOD)、过氧化氢酶(Catalase CAT)、谷胱甘肽过氧化物酶(Glutathione peroxidase GSH-Px)活性和脂质过氧化产物丙二醛(Malondialdehyde MDA)含量变化。观察摄入红葡萄酒后大鼠肝脏抗氧化酶活性变化及对肝脏脂质过氧化的影响。结果表明,红葡萄酒能提高SOD活性,且SOD活性与灌胃时间、剂量有一定关系;长期红葡萄酒和酒精摄入可诱导CAT活性增强,加剧肝脏的脂质过氧化(LPO)作用;红葡萄酒组、酒精组0.63、1.25 g/kg剂量GSH-Px活性均明显升高(P<0.05),酒精组1.88 g/kg剂量有极显著性差异(P<0.01);试验初期,红葡萄酒大剂量显著降低肝脏中MDA的含量。试验中期,红葡萄酒中大剂量显著降低MDA含量。试验末期,红葡萄酒大剂量和酒精中大剂量显著升高肝脏中MDA含量。  相似文献   

18.
The markers of oxidative stress were measured in four cerebrocortical regions of Alzheimer's disease (AD) and age-matched control brains. In controls the levels of diene conjugates (DC) and lipid peroxides (LOOH) were significantly higher in the sensory postcentral and occipital primary cortex than in the temporal inferior or frontal inferior cortex. The antioxidant capacity (AOC) was highest in the temporal, and GSH in the frontal inferior cortex. The highest activity of superoxide dismutase (SOD) and catalase (CAT) was found in the occipital primary cortex. Compared with controls, significantly higher level of DC and LOOH and attenuated AOC were evident in AD temporal inferior cortex. In AD frontal inferior cortex moderate increase in LOOH was associated with positive correlation between SOD activity and counts of senile plaques. Our data suggest that in AD cerebral cortex, the oxidative stress is expressed in the reducing sequence: temporal inferior cortex > frontal inferior cortex > sensory postcentral cortex occipital primary cortex, corresponding to the histopathological spreading of AD from the associative to primary cortical areas.  相似文献   

19.
The effects of DOCA-salt hypertensive treatment on hepatic glutathione-dependent defense system, antioxidant enzymes, lipid peroxidation, mixed function oxidase and UDP-glucuronyl transferase activities were investigated in male Sprague Dawley rats.Compared with controls, DOCA-salt hypertensive rats had lower body weights (linked to liver hypertrophy). Mixed function oxidase and p-nitrophenol-UGT activities were not affected by the treatment but a significant lower rate of the glucuronoconjugation rate of bilirubin (p < 0.001) was observed in DOCA-salt hypertensive rats. While cytosolic glutathione contents and glutathione reductase activity were not affected, glutathione peroxidase (p < 0.001), glutathione transferase (p < 0.001) and catalase (p < 0.01) activities were decreased and associated with higher malondialdehyde contents (p < 0.001) in treated rats. The imbalance in liver antioxidant status (increasing generation of cellular radical species), associated with increases in lipid peroxidation, suggests that oxidative stress might be directly related to arterial hypertension in DOCA-salt treated male Sprague Dawley rats.  相似文献   

20.
Administration of bromoethylamine (BEA, 1.2 mmol/kg) to fed rats induced a significant diminution in the activity of hepatic superoxide dismutase (at 1 h after treatment), catalase, and glutathione peroxidase and in the content of nonprotein sulfhydryls (at 15 h after treatment). The content of thiobarbituric acid reactants by the liver was enhanced by 1.9 times over control values (at 3 h). Light microscopy studies revealed that BEA (72 h after treatment) induced periportal fatty accumulation, focal liver cell necrosis, and diffuse inflammatory infiltrates, in addition to hypertrophic Kupffer cells and mitotic hepatocytes. Also, hypertrophic middle tunic or hypertrophic smooth muscle layers of arterioles was observed in the periportal space, with dilated sinusoidal capillaries and free macrophage infiltration. It is concluded that BEA induces a derangement in the antioxidant status of the liver with the consequent lipid peroxidation response, which may constitute a significant hepatotoxic mechanism of the haloaklylamine. © 1998 John Wiley & Sons, Inc. J Biochem Mol Toxicol 13: 47–52, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号