首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) has been used to compare the structure of beta-lactoglobulin, the major component of whey proteins, in solution and in its functional gel state. To induce variation in the conformation of beta-lactoglobulin under a set of gelling conditions, the effect of heating temperature, pH, and high pressure homogenization on the conformation sensitive amide I band in the infrared spectra of both solutions and gels has been investigated. The results showed that gelification process has a pronounced effect upon beta-lactoglobulin secondary structure, leading to the formation of intermolecular hydrogen-bonding beta-sheet structure as evidenced by the appearance of a strong band at 1614 cm(-1) at the expense of other regular structures. These results confirm that this structure may be essential for the formation of a gel network as it was previously shown for other globular proteins. However, this study reveals, for the first time, that there is a close relationship between conformation of beta-lactoglobulin in solution and its capacity to form a gel. Indeed, it is shown that conditions which promote predominance of intermolecular beta-sheet in solution such as pH 4, prevent the formation of gel in conditions used by increasing thermal stability of beta-lactoglobulin. On the basis of these findings, it is suggested that by controlling the extent of intermolecular beta-structure of the protein in solution, it is possible to modify the ability of protein to form a gel and as a consequence to control the properties of gels.  相似文献   

2.
The conformation of red bean globulin dispersions (≈10% in D2O or deuterated phosphate buffer pD 7.4) under the influence of pH, chaotropic salts, protein structure perturbants, and heating conditions was studied by Fourier-transform infrared (FTIR) spectroscopy. The FTIR spectrum of red bean globulin showed major bands from 1682 to 1637 cm−1 in the amide I′ region, corresponding to the four types of secondary structures, i.e. β-turns, β-sheets, -helix and random coils. At extreme pH conditions, there were changes in intensity in bands attributed to β-sheet (1637 and 1618 cm−1) and random coil (1644 cm−1) structures, and shifts of these bands to lower or higher wavenumbers, indicating changes in protein conformation. Chaotropic salts caused progressive increases in random coil structures and concomitant decreases in β-sheet bands, following the lyotrophic series of anions. In the presence of sodium dodecyl sulfate and ethylene glycol, pronounced increases in the random coil band were observed, accompanied by slight shifts of the β-sheet band. Addition of dithiothreitol and N-ethylmaleimide did not cause marked changes in the FTIR spectra. Heating at increasing temperature led to progressive decreases in the intensity of the -helix and β-sheet bands and increases in random coil band intensity, leveling off at around 60 °C. The data suggest that re-organization of protein structure occurred at temperatures well below the denaturation temperature of red bean globulin (86 °C) as determined by differential scanning calorimetry. This was accompanied by pronounced increases in the intensity of the two intermolecular β-sheet bands (1682 and 1619–1620 cm−1) associated with the formation of aggregated strands at higher temperatures (80–90 °C). Increases in intensity of the aggregation bands were also observed in the heat-induced buffer-soluble and insoluble aggregates.  相似文献   

3.
Reflectance Fourier transform infrared (FT-IR) microspectroscopy was applied to study the prevention of β-sheet formation of amyloid β (Aβ)(1–40) peptide by co-incubation with a hexapeptide containing a KLVFF sequence (Aβ(15–20) fragment). Second-derivative spectral analysis was used to locate the position of the overlapping components of the amide I band of Aβ peptide and assigned them to different secondary components. The result indicates that each intact sample of Aβ(15–20) fragment or Aβ(1–40) peptide previously incubated in distilled water at 37 °C transformed their secondary structure from 1649 (1651) or 1653 cm−1 to 1624 cm−1, suggesting the transformation from -helix and/or random coil structures to β-sheet structure. By co-incubating both samples with different molar ratio in distilled water at 37 °C, the structural transformation was not found for Aβ(1–40) peptide after 24 h-incubation. But the β-sheet formation of Aβ(1–40) peptide after 48 h-incubation was evidenced from the appearance of the IR peak at 1626 cm−1 by adding a little amount of Aβ(15–20) fragment. There was no β-sheet formation of Aβ(1–40) peptide after addition with much amount of Aβ(15–20) fragment, however, suggesting the higher amount of Aβ(15–20) fragment used might inhibit the β-sheet formation of Aβ(1–40) peptide. The more Aβ(15–20) fragment used made the more stable structure of Aβ(1–40) peptide and the less β-sheet formation of Aβ(1–40) peptide. The study indicates that the reflectance FT-IR microspectroscopy can easily evidence the prevention of β-sheet formation of Aβ(1–40) peptide by a short amyloid fragment.  相似文献   

4.
Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, 13C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol–gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were -helix and random coil in solution. There also existed a little β-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no -helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol–gel transformation. The velocity increased obviously when the temperature was above 30 °C. During the sol–gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to β-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.  相似文献   

5.
Fourier transform infrared spectroscopy has been used to investigate the conformational changes of glycinin, a major storage protein of soybean seeds, upon film-forming. The results show that the secondary structure of glycinin is mainly composed of a β-sheet (48%) and unordered (49%) structures. The amide I band of glycinin in film-forming conditions, i.e. in alkaline media and in the presence of plasticizing agent, reveals the conversion of 18% of the secondary structure of the protein from the β-sheet (6%) and random coil (12%) to the -helical conformation due to the helicogenic effect of the ethylene glycol used as the plasticizing agent. Conformational changes also occur upon the film-forming process leading to the formation of intermolecular hydrogen-bonded β-sheet structures. Results obtained from other plant families indicate that, whatever the origin and conformation of protein, formation of films leads to the appearance of intermolecular hydrogen-bonded β-sheet structures, suggesting that this type of structure might be essential for the network formation in films. Thus, it is hypothesized that, in the film state, intermolecular hydrogen bonding between segments of β-sheet may act as junction zones in the film network. This study reveals for the first time that there is a close relationship between the conformation of proteins and the mechanical properties of films.  相似文献   

6.
Theself-assembly of the soluble peptide Aβ into Alzheimer's disease amyloid is believed to involve a conformational change. Hence the solution conformation of Aβ is of significant interest. In contrast to studies in other solvents, in water Aβ is collapsed into a compact series of loops, strands, and turns and has no α-helical or β-sheet structure. Conformational stabilization is primarily attributed to van der Waals and electrostatic forces. A large conspicuous uninterrupted hydrophobic patch covers 25% of the surface. The compact coil structure appears meta-stable, and because fibrillization leads to formation of intermolecular β-sheet secondary structure, a global conformational rearrangement is highly likely. A molecular hypothesis for amyloidosis includes at least two primary driving forces, changes in solvation thermodynamics during formation of amyloid deposits and relief of internal conformational stress within the soluble precursor during formation of lower-energy amyloid fibrils.  相似文献   

7.
Fourier transform infrared spectroscopy has been applied to investigate the secondary structural changes ofΒ-lactoglobulin in water/ethanol mixtures. The studies were carried out at two differentpHs and at high protein concentrations. The spectra were recorded using an attenuated total reflection cell. The amide I band ofΒ-lactoglobulin in water reveals large amounts of intra extendedΒ-sheet structure. About 20% ethanol,Β-lactoglobulin unfolds andΒ-strand formation is observed.α-Helices are built up by increasing the ethanol concentration up to 30%. In 50% ethanol,Β-lactoglobulin gels providing the apparent pH are neutral. The secondary structural changes ofΒ-lactoglobulin were observed on the similarity maps obtained by Principal Component Analysis.  相似文献   

8.
Lefèvre T  Subirade M 《Biopolymers》2000,54(7):578-586
In order to reveal at a molecular level differences between fine-stranded and particulate gels, we present an Fourier transform infrared spectroscopic study of the thermal behavior of beta-lactoglobulin (beta-lg) in salt-free D(2)O solutions and low ionic strength at different pDs. Differences are found in the denaturation mechanism, in the unfolded state of the protein, in the aggregate formation, and in the strength of the intermolecular interactions. For fine-stranded gels (pD 2.8 and 7.8), heating induces the dissociation of the dimers into monomers. The protein undergoes extensive structural modifications before aggregation begins. Aggregation is characterized by the appearance of a new band attributed to intermolecular beta-sheets which is located in the 1613-1619 cm(-1) range. For particulate gels (pD 4.4 and 5.4), the protein structure is almost preserved up to 75-80 degrees C with no splitting of the dimers. The band characteristic of aggregation originates from the component initially located at 1623 cm(-1), suggesting that at the beginning of aggregation, globular beta-lg in the dimeric form associate to constitute oligomers with higher molecular mass. Aggregation may result in the association of globular slightly denatured dimers, leading to the formation of spherical particles rather than linear strands. The aggregation band is always located in the 1620-1623 cm(-1) range for particulate gels showing that hydrogen bonds are weaker for these aggregates than for fine-stranded ones. This has been related to a more extensive protein unfolding for fine-stranded gels that allows a closer alignment of the polypeptide chains, and then to the formation of much stronger hydrogen bonds. Small differences are also found in protein organization and in intermolecular hydrogen bond strength vs pD within the same type of gel. Protein conformation and protein-protein interactions in the gel state may be responsible of the specific macroscopic properties of each gel network. A coarse representation of the different modes of gelation is described.  相似文献   

9.
《FEBS letters》1994,350(2-3):235-239
Fourier transform infrared spectroscopy has been used to study the solution structure and thermal stability of the extracellular fragment of human transferrin receptor (tfRt) at extracellular and endosomal pH. At extracellular pH tfRt is composed of 56% -helix, 19% β-sheet and 14% turns. Upon acidification to endosomal pH the -helical content of the protein is reduced and the β-sheet content increased by nearly 10%. At extracellular pH, the midpoint temperature of thermal denaturation (Tm) for the loss of secondary and tertiary structure, and the formation of aggregated structures, is 71°C. At endosomal pH this temperature is reduced by ≈ 15°C. The apparent entropies of thermal denaturation indicate that the native structure of tfRt at endosomal pH is far more flexible than at extracellular pH.  相似文献   

10.
Scanning experiments have shown that the putative TM2 domain of the P2X7 receptor (P2X7R) lines the ionic pore. However, none has identified an α-helix structure, the paradigmatic secondary structure of ion channels in mammalian cells. In addition, some researchers have suggested a β-sheet conformation in the TM2 domain of P2X2. These data led us to investigate a new architecture within the P2X receptor family. P2X7R is considered an intriguing receptor because its activation induces nonselective large pore formation, in contrast to the majority of other ionic channel proteins in mammals. This receptor has two states: a low-conductance channel (∼10 pS) and a large pore (>400 pS). To our knowledge, one fundamental question remains unanswered: Are the P2X7R channel and the pore itself the same entity or are they different structures? There are no structural data to help solve this question. Thus, we investigated the hydrophobic M2 domain with the aim of predicting the fitted position and the secondary structure of the TM2 segment from human P2X7R (hP2X7R). We provide evidence for a β-sheet conformation, using bioinformatics algorithms and molecular-dynamics simulation in conjunction with circular dichroism in different environments and Fourier transform infrared spectroscopy. In summary, our study suggests the possibility that a segment composed of residues from part of the M2 domain and part of the putative TM2 segment of P2X7R is partially folded in a β-sheet conformation, and may play an important role in channel/pore formation associated with P2X7R activation. It is important to note that most nonselective large pores have a transmembrane β-sheet conformation. Thus, this study may lead to a paradigmatic change in the P2X7R field and/or raise new questions about this issue.  相似文献   

11.
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimer''s disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.  相似文献   

12.
The effects of heating temperature on gel properties and conformational changes were investigated in glycinin and β-conglycinin gels using Theological and Fourier transform ir (FTIR) methods. Solutions of 15 wt % glycinin or β-conglycinin in 35 mM phosphate buffer at pH 7.6 were heated at various temperatures for 30 min and rheological properties were measured at 20°C. The storage modulus G′ as a function of frequency changed from a monotonical decrease with decreasing frequency to a plateau in the range from 0.0018 to 40 Hz by heating at temperatures higher than 80°C for glycinin and 65°C for β-conglycinin. A band at 1618 cm?1 (associated with the β-sheet structure) on ir spectra increased with the formation of heat-induced gels. The value of the storage modulus G′ correlated well with the increase in absorbance at 1618 cm?1. These results suggest that the formation of a β-sheet structure may be closely related to the value of the storage modulus G′ for heat-induced gels in soybean proteins and that heat-induced gels of glycinin and β-conglycinin are formed by cross-links with intermolecular β-sheet structures. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Thermally reversible acid-induced gelation of low-methoxy pectin   总被引:1,自引:0,他引:1  
Gelation of low-methoxy pectin (DE 31.1) on cooling under acidic conditions in the absence of Ca2+ has been investigated by rheological measurements under low-amplitude oscillatory shear. The mechanical spectra obtained after 60 min at 5°C showed a progressive increase in solid-like response (increasing G′; decreasing tan δ; increasing frequency-dependence of η*) as the pH was reduced from 4.0 to 1.6, with formation of a critically crosslinked network at pH 3.0 (for a polymer concentration of 3.0 wt%). By extrapolation from X-ray fibre diffraction analysis of pectic acid, it is suggested that crosslinking occurs by association of three-fold helices. At pH values between 3.5 and 2.5 there is no detectable thermal hysteresis between the sol–gel transition on cooling and gel–sol transition on heating, and both are accompanied by a sigmoidal change in optical rotation (attributed to formation and melting of three-fold order). Substantial hysteresis is, however, observed at lower and higher pH, and is attributed to extensive aggregation as electrostatic repulsion is suppressed (below pH 2.5) and slow formation of intermolecular hydrogen bonds by protonated carboxyl groups (above pH 3.5), respectively. The transition enthalpy from DSC heating scans has a maximum value of ΔH≈11 J/g at pH 3.0, but decreases sharply at lower and higher pH, with accompanying loss of a detectable transition in optical rotation. It is suggested that the chain conformation in solution at low pH is predominantly three-fold with, therefore, little conformational change on adoption of the ordered, intermolecular structure, whereas at high pH the solution conformation is predominantly two-fold, with only limited conversion to the three-fold (acid) form on cooling.  相似文献   

14.
The effect of 2,2,2-trifluoroethanol (TFE) on the structure of an all β-sheet protein, cardiotoxin analogue 111 (CTX III) from the Taiwan cobra (Naja naja atra) is studied. It is found that high concentrations ( > 80% v/v) of TFE induced a β-sheet to -helix structural transition. It is found that in denatured and reduced CTX III (rCTX III) helical conformation is induced even upon addition of low concentrations ( > 10% v/v) of TFE. Using three other proteins, namely, ribonuclease A (RNase A), lysozyme and -lactalbumin, it is been observed that helix-induction by TFE is intricately linked to drastic destabilization of native tertiary structural interactions in the proteins.  相似文献   

15.
The solution structure of melanoma growth stimulating activity (MGSA) has been investigated using proton NMR spectroscopy. Sequential resonance assignments have been carried out, and elements of secondary structure have been identified on the basis of NOE, coupling constant, chemical shift, and amide proton exchange data. Long-range NOEs have established that MGSA is a dimer in solution. The secondary structure and dimer interface of MGSA appear to be similar to those found previously for the homologous chemokine interleukin-8 [Clore et al. (1990) Biochemistry 29, 1689-1696]. The MGSA monomer contains a three stranded anti-parallel β-sheet arranged in a ‘Greek-key’ conformation, and a C-terininal -helix (residues 58 69).  相似文献   

16.
Raman and Fourier transform infrared (FTIR) spectroscopies and circular dichroism (CD) have been applied to investigate the secondary structure of bombesin in the solid state and in phosphate buffer solution (pH 3.8). At concentrations around 10−5 M, circular dichroism reveals that bombesin exists as an irregular or disordered conformation. However, the secondary structure of the peptide appears to be a mixture of disordered structure and intermolecular β-sheets in 0.01 M sodium phosphate buffer when the peptide concentrations are higher than around 6.5 mM. The tendency of bombesin to form aggregated β-sheet species seems to be originated mainly in the sequence of the residues 7–14, as supported by the Raman spectra and β-sheet propensities (Pβ) of the amino-acid residues. It is the hydrophobic force of this amino-acid sequence, and not a salt bridge effect, that is the factor responsible for the formation of peptide aggregates.  相似文献   

17.
The protein β-lactoglobulin aggregates into two apparently distinct forms under different conditions: amyloid fibrils at pH values away from the isoelectric point, and spherical aggregates near it. To understand this apparent dichotomy in behavior, we studied the internal structure of the spherical aggregates by employing a range of biophysical approaches. Fourier transform infrared studies show the aggregates have a high β-sheet content that is distinct from the native β-lactoglobulin structure. The structures also bind the amyloidophilic dye thioflavin-T, and wide-angle x-ray diffraction showed reflections corresponding to spacings typically observed for amyloid fibrils composed of β-lactoglobulin. Combined with small-angle x-ray scattering data indicating the presence of one-dimensional linear aggregates at the molecular level, these findings indicate strongly that the aggregates contain amyloid-like substructure. Incubation of β-lactoglobulin at pH values increasingly removed from the isoelectric point resulted in the increasing appearance of fibrillar species, rather than spherical species shown by electron microscopy. Taken together, these results suggest that amyloid-like β-sheet structures underlie protein aggregation over a much broader range of conditions than previously believed. Furthermore, the results suggest that there is a continuum of β-sheet structure of varying regularity underlying the aggregate morphology, from very regular amyloid fibrils at high charge to short stretches of amyloid-like fibrils that associate together randomly to form spherical particles at low net charge.  相似文献   

18.
Three forms of silk fibroin (SF) matrices, woven (microfiber), non-woven (nanofiber), and film form, were used to perform a conformational analysis and cell culture using normal human oral keratinocytes (NHOK). To obtain the SF microfiber (SF-M) matrix, natural grey silk was degummed, while the SF film (SF-F) and nanofiber (SF-N) matrices were prepared by casting and electrospinning the formic acid solutions of the regenerated SF, respectively. For insolubilization, as-prepared SF-F and SF-N matrices were chemically treated with an aqueous methanol solution of 50%. The conformational structures of as-prepared and chemically treated SF matrices were investigated using attenuated total reflectance infrared spectroscopy (ATR-IR) and solid-state 13C CP/MAS nuclear magnetic resonance (NMR) spectroscopy. The as-cast SF-F matrix formed a mainly β-sheet structure that was similar to the SF-M matrix, whereas the as-spun SF-N matrix had a random coil conformation as the predominant secondary structure. Conformational transitions from random coil to β-sheet of the as-spun SF-N occurred rapidly within 10 min following aqueous methanol treatment, and were confirmed by solid-state 13C NMR analysis. To assess the cytocompatibility and cells behavior on the different textures of SF, we examined the cell attachment and spreading of NHOK that was seeded onto the SF matrices, as well as the interaction between the cells and SF matrices. Our results indicate that the SF nanofiber matrix may be more preferable than SF film and SF microfiber matrices for biomedical applications, such as wound dressings and scaffolds for tissue engineering.  相似文献   

19.
The method presented can easily produce milligram amounts of glycodelin from pregnancy endometrium, with a 19% yield. It involves anion-exchange chromatography, gel permeation and chromatofocusing; it results in one stainable band at Mr 28 000 after sodium dodecyl sulphate–polyacrylamide electrophoresis, as well as after immunoblot analysis, performed using an affinity-purified IgG fraction from an antiserum against glycodelin. In spite of this, the corresponding gel isoelectric focusing pattern gives four stainable bands with pI values between 4.55 and 5.2. Western immunoblot analysis of tissue extracts indicates the presence of glycodelin epitopes associated with materials heavier than the native protein. Circular dichroism spectra of the highly purified protein in water solutions indicate a large amount of β-sheet conformation, whereas those obtained with different proportions of 2-propanol in water, show an increased proportion of α-helix conformation.  相似文献   

20.
We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号