首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary stable products of photosynthetic electron flow are NADPH and ATP. Stoichiometry of their production depends on the ratio of protons pumped across the thylakoid membrane to electrons passed through the electron transport pathway (H+/e ratio). Flexible requirements of the ATP/NADPH ratio by various assimilatory reactions in chloroplasts must be fulfilled by the H+/e ratio during the electron flow. In addition to the well-known role of ΔpH during ATP synthesis, ΔpH also functions as a trigger of the down-regulation of photosystem II (PSII) photochemistry. Excessive light energy is safely dissipated as heat by this regulatory process to suppress the generation of toxic reactive oxygen species. Thus, regulation of the H+/e ratio may function in the photoprotection, as well as in the regulation of the ATP/NADPH production ratio. It has long been the consensus that the H+/e ratio can be controlled by regulating the proton-transporting Q-cycle in the cytochrome b 6 f complex and by the cyclic electron flow around photosystem I (PSI). Despite the possible physiological importance and the long history of interest, the molecular identity of Q-cycle regulation and the cyclic electron flow around PSI have been remained unclear. The recent improvements in research tools, including the genetic approach using chlorophyll fluorescence imaging and establishment of the chloroplast transformation technique, are providing new insights into classical topics. In this review, we focus on regulation of the H+/e ratio especially from the view of photosynthetic regulation. Received: August 2, 2001 / Accepted: October 1, 2001  相似文献   

2.
3.
Regulation of photosynthetic electron transport   总被引:1,自引:0,他引:1  
The photosynthetic electron transport chain consists of photosystem II, the cytochrome b(6)f complex, photosystem I, and the free electron carriers plastoquinone and plastocyanin. Light-driven charge separation events occur at the level of photosystem II and photosystem I, which are associated at one end of the chain with the oxidation of water followed by electron flow along the electron transport chain and concomitant pumping of protons into the thylakoid lumen, which is used by the ATP synthase to generate ATP. At the other end of the chain reducing power is generated, which together with ATP is used for CO(2) assimilation. A remarkable feature of the photosynthetic apparatus is its ability to adapt to changes in environmental conditions by sensing light quality and quantity, CO(2) levels, temperature, and nutrient availability. These acclimation responses involve a complex signaling network in the chloroplasts comprising the thylakoid protein kinases Stt7/STN7 and Stl1/STN7 and the phosphatase PPH1/TAP38, which play important roles in state transitions and in the regulation of electron flow as well as in thylakoid membrane folding. The activity of some of these enzymes is closely connected to the redox state of the plastoquinone pool, and they appear to be involved both in short-term and long-term acclimation. This article is part of a Special Issue entitled "Regulation of Electron Transport in Chloroplasts".  相似文献   

4.
The photosynthetic electron transport chain consists of photosystem II, the cytochrome b(6)f complex, photosystem I, and the free electron carriers plastoquinone and plastocyanin. Light-driven charge separation events occur at the level of photosystem II and photosystem I, which are associated at one end of the chain with the oxidation of water followed by electron flow along the electron transport chain and concomitant pumping of protons into the thylakoid lumen, which is used by the ATP synthase to generate ATP. At the other end of the chain reducing power is generated, which together with ATP is used for CO(2) assimilation. A remarkable feature of the photosynthetic apparatus is its ability to adapt to changes in environmental conditions by sensing light quality and quantity, CO(2) levels, temperature, and nutrient availability. These acclimation responses involve a complex signaling network in the chloroplasts comprising the thylakoid protein kinases Stt7/STN7 and Stl1/STN7 and the phosphatase PPH1/TAP38, which play important roles in state transitions and in the regulation of electron flow as well as in thylakoid membrane folding. The activity of some of these enzymes is closely connected to the redox state of the plastoquinone pool, and they appear to be involved both in short-term and long-term acclimation. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

5.
Regulation of the photosynthetic electron transport chain   总被引:19,自引:1,他引:19  
The regulation of electron transport between photosystems II and I was investigated in the plant Silene dioica L. by means of measurement of the kinetics of reduction of P700 following a light-to-dark transition. It was found that, in this species, the rate constant for P700 reduction is sensitive to light intensity and to the availability of CO2. The results indicated that at 25 °C the rate of electron transport is down-regulated by approximately 40–50% relative to the maximum rate achievable in saturating CO2 and that this down-regulation can be explained by regulation of the electron transport chain itself. Measurements of the temperature sensitivity of this rate constant indicated that there is a switch in the rate-limiting step that controls electron transport at around 20 °C: at higher temperatures, CO2 availability is limiting; at lower temperatures some other process regulates electron transport, possibly a diffusion step within the electron transport chain itself. Regulation of electron transport also occurred in response to drought stress and sucrose feeding. Measurements of non-photochemical quenching of chlorophyll fluorescence did not support the idea that electron transport is regulated by the pH gradient across the thylakoid membrane, and the possibility is discussed that the redox potential of a stromal component may regulate electron transport. Received: 4 March 1999 / Accepted: 25 May 1999  相似文献   

6.
7.
The questions of whether the stoichiometry of the turnover of cytochrome f, and the time-course of its reduction subsequent to a light flash, are consistent with efficient function in noncyclic electron transport have been investigated. Measurements were made of the absorbance change at the 553-nm alpha-band maximum relative to a reference wavelength. In the dark cytochrome f is initially fully reduced, oxidized by a 0.3-s flash, and reduced again in the dark period after the flash. In the presence of gramicidin at 18 degrees C, the dark reduction was characterized by a half-time of 25-30 ms, stoichiometries of cytochrome f:chlorophyll and P700:chlorophyll of 1:670 and 1:640, respectively, and a short time delay. The time delay in the dark reduction of cytochrome f, which is expected for a component in an intermediate position in the chain, becomes more apparent in the presence of valinomycin and K+. Under these conditions the half-time for cytochrome f dark reduction is 130-150 ms, and the delay is approximately equal to 20 ms. The measured value for the activation energy of the dark reduction of cytochrome f (11 +/- 1 kcal/mol) is the same as that for noncyclic electron transport in steady-state light. A sigmoidal time-course for the reduction of cytochrome f has been calculated for a simple linear electron transport chain. The kinetics for reduction of cytochrome f predicted by the calculation, in the presence of valinomycin and K+, are in reasonably good agreement with the experimental data. There is an appreciable amount of data in the literature to document complex properties of cytochrome f after illumination with short flashes, and evidence for complexity in a light-minus-dark transition. The data presented here, obtained after a long flash that should establish steady-state conditions, either fulfill or are consistent with the basic criteria for efficient function of cytochrome f in noncyclic electron transport.  相似文献   

8.
The effects of Mn2+ on aerobic photobleaching of carotenoids, on photoreduction of 2,6-dichlorophenolindophenol (DCIP) and on fluorescence above 600 mμ of spinach chloroplasts washed with 0.8 M Tris-HC1 buffer were investigated. Carotenoids (mostly carotenes, lutein and violaxanthin) in the Tris-washed chloroplasts were irreversibly bleached by illumination with red light, while carotenoids in normal chloroplasts prepared with a low concentration of Tris-HC1 underwent no bleaching upon illumination. The photobleaching of carotenoids observed with Tris-washed chloroplasts was inhibited by Mn2+ (MnCl2 or MnSO4) as well as by some inhibitors of the Hill reaction such as dichlorophenyl-1,1-dimethylurea (DCMU), methylthio-4,6-bis-isopropylamino-s-triazine and o-phenanthroline or by reducing agents such as ascorbate plus tetramethyl-p-phenylene diamine (TMPD). DCIP photoreduction, which was deactivated by Tris, was reactivated to 50–80% of the rate for normal chloroplasts upon addition of Mn2+. The restored photoreduction of DCIP was inhibited by DCMU and carbonylcyanide m-chlorophenylhydrazone (CCCP). The steady-state fluorescence yield of normal chloroplasts measured at room temperature was lowered by Tris treatment, and the decreased yield was restored by adding Mn2+ as well as ascorbate plus TMPD. CCCP also lowered the yield; the yield was recovered by adding ascorbate plus TMPD. Determination of manganese in normal and Tris-washed chloroplasts showed that 30% of the manganese in chloroplast was removed with Tris. It was postulated that Mn2+ functions in the electron transport on the oxidizing side of Photosystem II at a site between water and an electron carrier (Y). CCCP as well as Tris inhibits the reduction of Y+ by Mn2+, and carotenoids are oxidized by Y+ which is reduced by ascorbate plus TMPD.  相似文献   

9.
10.
Oxygenic photosynthesis depends on a highly conserved electron transport system, which must be particularly dynamic in its response to environmental and physiological changes, in order to avoid an excess of excitation energy and subsequent oxidative damage. Apart from cyclic electron flow around PSII and around PSI, several alternative electron transport pathways exist including a plastoquinol terminal oxidase (PTOX) that mediates electron flow from plastoquinol to O(2). The existence of PTOX was first hypothesized in 1982 and this was verified years later based on the discovery of a non-heme, di-iron carboxylate protein localized to thylakoid membranes that displayed sequence similarity to the mitochondrial alternative oxidase. The absence of this protein renders higher plants susceptible to excitation pressure dependant variegation combined with impaired carotenoid synthesis. Chloroplasts, as well as other plastids (i.e. etioplasts, amyloplasts and chromoplasts), fail to assemble organized internal membrane structures correctly, when exposed to high excitation pressure early in development. While the role of PTOX in plastid development is established, its physiological role under stress conditions remains equivocal and we postulate that it serves as an alternative electron sink under conditions where the acceptor side of PSI is limited. The aim of this review is to provide an overview of the past achievements in this field and to offer directions for future investigative efforts. Plastoquinol terminal oxidase (PTOX) is involved in an alternative electron transport pathway that mediates electron flow from plastoquinol to O(2). This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

11.
According to the concept of the Q-cycle, the H+/e- ratio of the electron transport chain of thylakoids can be raised from 2 to 3 by means of the rereduction of plastoquinone across the cytochrome b6f complex. In order to investigate the H+/e- ratio we compared stationary rates of electron transport and proton translocation in spinach thylakoids both in the presence of the artificial electron acceptor ferricyanide and in the presence of the natural acceptor system ferredoxin+NADP. The results may be summarised as follows: (1) a variability of the H+/e- ratio occurs with either acceptor. H+/e- ratios of 3 (or even higher in the case of the natural acceptor system, see below) are decreased towards 2 if strong light intensity and low membrane permeability are employed. Mechanistically this could be explained by proton channels connecting the plastoquinol binding site alternatively to the lumenal or stromal side of the cytochrome b6f complex, giving rise to a proton slip reaction at high transmembrane DeltapH. In this slip reaction protons are deposited on the stromal instead of the lumenal side. In addition to the pH effect there seems to be a contribution of the redox state of the plastoquinone pool to the control of proton translocation; switching over to stromal proton deposition is favoured when the reduced state of plastoquinone becomes dominant. (2) In the presence of NADP a competition of both NADP and oxygen for the electrons supplied by photosystem I takes place, inducing a general increase of the H+/e- ratios above the values obtained with ferricyanide. The implications with respect to the adjustment of a proper ATP/NADPH ratio for CO2 reduction are discussed.  相似文献   

12.
The xanthophyll cycle represents one of the important photoprotection mechanisms in plant cells. In the present review, we summarize current knowledge about the violaxanthin cycle of vascular plants, green and brown algae, and the diadinoxanthin cycle of the algal classes Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. We address the biochemistry of the xanthophyll cycle enzymes with a special focus on protein structure, co-substrate requirements and regulation of enzyme activity. We present recent ideas regarding the structural basis of xanthophyll cycle-dependent photoprotection, including different models for the mechanism of non-photochemical quenching of chlorophyll a fluorescence. In a dedicated chapter, we also describe the unique violaxanthin antheraxanthin cycle of the Prasinophyceae, together with its implication for the mechanism of xanthophyll cycle-dependent heat dissipation. The interaction between the diadinoxanthin cycle and alternative electron flow pathways in the chloroplasts of diatoms is an additional topic of this review, and in the last chapter we cover aspects of the importance of xanthophyll cycle-dependent photoprotection for different algal species in their natural environments.  相似文献   

13.
The diffusion of plastoquinol and its binding to the cytochrome bf complex, which occurs during linear photosynthetic electron transport and is analogous to reaction sequences found in most energy-converting membranes, has been studied in intact thylakoid membranes. The flash-induced electron transfer between the laterally separated photosystems II and photosystems I was measured by following the sigmoidal reduction kinetics of P-700+ after previous oxidation of the intersystem electron carriers. The amount of flash-induced plastoquinol produced at photosystem II was (a) reduced by inhibition with dichlorophenyl-dimethylurea and (b) increased by giving a second saturating flash. These signals were simulated by a new model which combines a deterministic simulation of reaction kinetics with a Monte Carlo approach to the diffusion of plastoquinol, taking into account the known structural features of the thylakoid membrane. The plastoquinol molecules were assumed to be oxidized by either a diffusion-limited or a nondiffusion-limited step in a collisional mechanism or after binding to the cytochrome bf complex. The model was able to account for the experimental observations with a nondiffusion-limited collisional mechanism or with a binding mechanism, giving minimum values for the diffusion coefficient of plastoquinol of 2 × 10-8 cm2s-1 and 3 × 10-7 cm2s-1, respectively.  相似文献   

14.
Photosynthetic electron transport activity has been measured in chloroplasts isolated from dark-grown seedlings of Pinus silvestris L. and in chloroplasts isolated from seedlings subjected to illumination for periods of up to 48 h. Activities of photosystem 2, photosystem 1 and photosystem 2 plus 1 have been measured. Chloroplasts isolated from dark-grown seedlings showed significant electron transport activity through both photosystems and through the entire electron transport chain from water to NADP. Illumination of the seedlings for only 5 min markedly promoted photosystem 2 activity. The artificial electron donor, diphenylcarbazide. promoted activity in chloroplasts from dark-grown seedlings and in chloroplasts from seedlings illuminated for up to 30 min. In comparison to photosystem 2 and overall electron transport from water to NADP, photosystem 1 activity increased only slightly during illumination. Measurements of electron transport and fluorescence kinetics have confirmed that photosynthetic electron transport capacity is limited on the water splitting side of photosystem 2 in dark-grown seedlings, whereas the primary and secondary electron acceptors of photosystem 2 are fully synthesized and functioning in darkness. Polyethylene glycol must be used as a protective agent when isolating photoactive chloroplasts from secondary needles of conifers. However, the presence of polyethylene glycol, when isolating chloroplasts from dark-grown pine cotyledons, caused a total inhibition of the activity of photosystem 2. The failure of others to show a substantial electron transport activity in chloroplasts from dark-grown Pinus silvestris might depend on their use of polyethylene glycol in the preparation medium and/or on their use of suboptimal reaction conditions for the electron transport measurements.  相似文献   

15.
Phloridzin (2',4',6',4-tetraoxyhydrochalcon-2'-glucoside) was used to study the localization of synthesis of ATP in the electrontransporting chain of photosynthesis. It was shown that phloridzin inhibits the rate of photoreduction of NADP+ by isolated pea chloroplasts by 40%, electron transport via cytochrome f by 100% and via plastocyanin--by 50%. The "crossover" experiments demonstrated that phloridzin inhibits ADP-induced photoreduction of cytochrome f, having no effect on plastocyanin under identical conditions. It is assumed that the site of ATP synthesis is localized on the reduced site of cytochrome f, while the carrier itself is located in the electron transporting chain coupled to phosphorylation. It is possible that only part of the plastocyanin molecules are located in the phosphorylating pathway of electron transport.  相似文献   

16.
17.
Unicellular algae are characterized by an extreme flexibility with respect to their responses to environmental constraints. This flexibility probably explains why microalgae show a very high biomass yield, constitute one of the major contributors to primary productivity in the oceans and are considered a promising choice for biotechnological applications. Flexibility results from a combination of several factors including fast changes in the light-harvesting apparatus and a strong interaction between different metabolic processes (e.g. respiration and photosynthesis), which all take place within the same cell. Microalgae are also capable of modifying their photosynthetic electron flow capacity, by changing its maximum rate and/or by diverting photogenerated electrons towards different sinks depending on their growth status. In this review, we will focus on the occurrence and regulation of alternative electron flows in unicellular algae and compare data obtained in these systems with those available in vascular plants. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

18.
Rhodobacter sphaeroides responds to a decrease in light intensity by a transient stop followed by adaptation. There is no measurable response to increases in light intensity. We confirmed that photosynthetic electron transport is essential for a photoresponse, as (i) inhibitors of photosynthetic electron transport inhibit photoresponses, (ii) electron transport to oxidases in the presence of oxygen reduces the photoresponse, and (iii) the magnitude of the response is dependent on the photopigment content of the cells. The photoresponses of cells grown in high light, which have lower concentrations of light-harvesting photopigment and reaction centers, saturated at much higher light intensities than the photoresponses of cells grown in low light, which have high concentrations of light-harvesting pigments and reaction centers. We examined whether the primary sensory signal from the photosynthetic electron transport chain was a change in the electrochemical proton gradient or a change in the rate of electron transport itself (probably reflecting redox sensing). R. sphaeroides showed no response to the addition of the proton ionophore carbonyl cyanide 4-trifluoromethoxyphenylhydrazone, which decreased the electrochemical proton gradient, although a behavioral response was seen to a reduction in light intensity that caused an equivalent reduction in proton gradient. These results strongly suggest that (i) the photosynthetic apparatus is the primary photoreceptor, (ii) the primary signal is generated by a change in the rate of electron transport, (iii) the change in the electrochemical proton gradient is not the primary photosensory signal, and (iv) stimuli affecting electron transport rates integrate via the electron transport chain.  相似文献   

19.
In this paper, we have presented a minireview on the interaction of bicarbonate, formate and herbicides with the thylakoid membranes.The regulation of photosynthetic electron transport by bicarbonate, formate and herbicides is described. Bicarbonate, formate, and many herbicides act between the primary quinone electron acceptor QA and the plastoquinone pool. Many herbicides like the ureas, triazines and the phenol-type herbicides act, probably, by the displacement of the secondary quinone electron acceptor QB from its binding site on a QB-binding protein located at the acceptor side of Photosystem II. Formate appears to be an inhibitor of electron transport; this inhibition can be removed by the addition of bicarbonate. There appears to be an interaction of the herbicides with bicarbonate and/or It has been suggested that both the binding of a herbicide and the absence of bicarbonate may cause a conformational alteration of the environment of the QB-binding site. The alteration brought about by a herbicide decreases the affinity for another herbicide or for bicarbonate; the change caused by the absence of bicarbonate decreases the affinity for herbicides. Moreover, this change in conformation causes an inhibition of electron transport. A bicarbonate-effect in isolated intact chloroplasts is demonstrated.Paper presented at the FESPP meeting (Strasbourg, 1984)  相似文献   

20.
《BBA》1987,893(3):434-443
The effect of CO2 upon photosynthetic electron transport was examined in wheat and maize leaves in order to establish whether CO2 had a direct role in electron-transport regulation in vivo. When intercellular CO2 was depleted a transient rise in chlorophyll fluorescence occurred which correlated with an increase in the reduction of the Photosystem II primary quinone acceptor, QA, and a decrease in CO2 fixation rate. However, when intercellular CO2 was reduced from an already low level (50 μmol·mol−1) towards zero a substantial further reduction in QA occurred with little change in fluorescence or CO2 fixation. In very low intercellular CO2 when no measurable CO2 fixation was sustained, an appreciable fraction of QA still remained oxidised, however, maximal reduction of QA occurred when O2 was also removed. QA could then be substantially reoxidised by the readdition of small amounts of CO2 (20–40 μmol) which only facilitated a very small increase in CO2 fixation. Changes in the kinetics of the fast rise in fluorescence emission indicated that QA-to-QB electron transfer was decreased in a CO2-free atmosphere and QB was poised in a more oxidised state. Electron transport that was independent of CO2 fixation was measured in methyl viologen-treated leaf discs. In 1% O2, but not in 21% O2, light-dependent electron transport to methyl viologen was decreased significantly by the depletion of CO2. It is concluded that CO2 can modify the redox state of Photosystem II electron transport acceptors in vivo independently of carbon assimilation and that there is a complex interaction between CO2 and O2 in the regulation of photosynthetic electron transport. The possibility that CO2 operates via the reversible binding to PS II and thereby acts as a cofactor for efficient PS II electron transport in the leaf is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号