首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
本文介绍一种用激光共聚焦扫描显微镜同步观察喜树碱、丛枝茵根及其结构的方法.喜树丛枝茵根经甘油浸润和明胶包埋后制成切片,再经酸性品红染色后在激光共聚焦扫描显微镜下观察.波长488mm处激发光下可获得清晰的丛枝茵根透射图像.364 nm处激发光下可获得喜树碱的荧光图像,通过两图像的叠加,在喜树丛枝菌根中得到喜树碱的定位图像.用此方法初步研究了喜树丛枝茼根的喜树碱分布.  相似文献   

2.
心肌细胞钙瞬变和细胞收缩的激光共聚焦成像研究   总被引:4,自引:0,他引:4  
目的:游离钙离子参与机体的多种重要生理功能。本研究着重探讨如何利用激光共聚焦显微镜线扫描成像技术同时记录正常情况下心肌细胞的钙瞬变以及由此引起的细胞收缩过程。方法与结果:本研究以分离的心室肌细胞为对象,通过局部场刺激诱发细胞的钙瞬变和收缩,同时配合使用激光共聚焦显微镜成像系统,以线扫描方式记录实验结果。结果表明,钙瞬变先于细胞收缩发生(约早31ms),而收缩最大处远落后于钙瞬变峰值发生处(约慢346ms)。结论:激光共聚焦显微镜线扫描成像技术具有较好的时问分辨率和空间分辨率,其实验结果直观、明确、可靠,是较理想的研究钙瞬变和细胞收缩的光学记录方法。  相似文献   

3.
使用阳离子胶体金标记中国仓鼠卵巢细胞(CHO-K1)的阴离子位点,并采用双光子荧光显微成像和荧光寿命成像技术记录活细胞的阴离子场分布.阳离子胶体金是纳米量级金微粒与多聚L-赖氨酸的结合物,金纳米微粒在超短激光脉冲的照射下可以产生高度局域化的光热效应.当飞秒激光脉冲聚焦在细胞膜上标记的金纳米微粒时会产生这种纳米尺度的微光热效应,并在不影响细胞活性的前提下暂时提高细胞膜的通透性.基于这种效应,使用聚焦的飞秒激光脉冲三维扫描照射CHO-K1细胞,将分子质量为10ku的荧光探针大分子异硫氰酸荧光素葡聚糖(fluorescein isothioeyanate-dextran, FITC-D)递送到CHO-K1细胞的内部,并用双光子荧光图像记录其递送的过程.使用流式细胞仪分析不同实验条件下FITC-D的转导率和细胞死亡率的关系.  相似文献   

4.
利用激光共聚焦扫描显微镜观察激光辐照前后微藻细胞叶绿体自体荧光图像,并对荧光变化进行定量分析。用Nd:YAP激光辐照扁藻、金藻及三角褐指藻。实验结果表明:Nd:YAP激光辐照后,藻细胞荧光光谱峰位不变,但荧光峰值发生较大变化,在激光促长剂量辐照下,几种微藻细胞的荧光强度均比对照组强。激光辐照微藻产生的生理刺激效应可以反映在细胞的荧光特性与强度变化上。激光共聚焦扫描显微镜可以作为微藻激光生物效应研究的一种有效方法。  相似文献   

5.
征稿启事     
《激光生物学报》2010,19(5):F0003-F0003
《激光生物学报》是中国遗传学会主办的学术期刊,主要刊登以人类、动物、植物和微生物为实验对象的激光(光)生物学、生物光子学、激光(光)生物医学(含光子中医学、光动力疗法、激光整形美容)、放射生物学(含激光育种、辐射育种、空间育种等)、离子束生物工程及其相关的激光生物技术(含微束照射技术、光镊技术、成像技术、光谱技术、共聚焦扫描显微技术、  相似文献   

6.
FRAP法对内源性GFP在活细胞中动态分布的共焦显微镜成像   总被引:1,自引:0,他引:1  
金鹰  邢达 《激光生物学报》2005,14(4):293-298
各种分子在核质问的动态分布与它们的跨膜转运密切相关。离子、r证矾A和多数小分子量蛋白可以通过核孔复合物(NPG,nuclear pore complexes)在核质问自由扩散,而分子量大于70kDa的分子需要ATP和核定位序列才能实现跨膜转运。本实验利用荧光漂白后恢复(FRAP,fluorescence recovery after photobleaching)法观测人肺腺癌肿瘤细胞(ASTC-a-1)中表达的27 kDa EGFP在核质问的被动扩散,并以激光共焦显微镜进行实时成像。转染EGFP外源基因的肿瘤细胞系在经过半年的传代培养后仍能稳定而高效的表达其荧光标记。实验表明,EGFP分子可以通过核孔在核质间被动扩散,但扩散速度远低于在核内或质内的速度,没有证据表明EGFP可以在细胞问扩散。  相似文献   

7.
激光共聚焦显微技术是一种以激光作为激发光源,通过特殊装置"针孔"来过滤离焦光线以提高光学分辨率和对比度的光学成像技术。由于大部分化石不能自发荧光,该技术在古生物学领域尚未实现大范围的应用。但若围岩能自发荧光而与化石之间具有一定衬度,或化石因含特殊成分能在特定波段激光照射下自发荧光而产生结构衬度,则可以运用激光共聚焦显微技术获得在普通光学显微镜及荧光显微镜下难以清晰观察到的信息。为推动激光共聚焦技术在古生物学领域中的应用,文中系统介绍了该技术的原理与使用方法,并以埃迪卡拉纪磷酸盐化特异埋藏的瓮安生物群微体化石为例,展示了该技术在化石成像中的若干优势。实验结果表明,瓮安生物群微体化石因富含磷灰石可自发荧光实现成像,使用激光共聚焦显微成像技术观察瓮安生物群化石薄片不仅可以获得较好衬度,而且还能提高成像的分辨率和清晰度。此外,在化石薄片的厚度范围内还可以实现化石结构三维重建。  相似文献   

8.
慈姑根尖细胞染色体的激光共聚焦扫描显微镜观察结果   总被引:1,自引:0,他引:1  
利用荧光标记和激光共聚焦扫描显微技术,观察了慈姑根尖细胞有丝分裂各个时期染色体的主要特征,获得十分理想的效果.与传统压片观察法比较,本实验方法成像更清晰,能方便地从不同角度观察整个细胞核中染色体的分布形态,更好地揭示细胞分裂中的染色体行为.  相似文献   

9.
本文以亚心形扁藻为样品,波长1 341 nm的Nd∶YAP激光为光源,通过激光共聚焦扫描显微技术,研究Nd∶YAP激光辐照亚心形扁藻对亚心形扁藻叶绿体自体荧光强度和叶绿体面积大小的影响。Nd∶YAP激光辐照后的亚心形扁藻通过488 nm Ar^+激光激发获得亚心形扁藻自体荧光图像及其荧光光谱。结果表明,试验中除(10 W,60 s)辐照剂量组外,其余辐照剂量组均提高了亚心形扁藻的自体荧光强度,且所有的辐照剂量组均增大了亚心形扁藻的叶绿体面积。Nd∶YAP激光可刺激亚心形扁藻的叶绿体发育,促进藻细胞的生长,改善叶绿体光合作用的活性。  相似文献   

10.
目的探讨分叉双歧杆菌的完整肽聚糖(WPG)对巨噬细胞膜脂流动性的影响。方法首先分离培养昆明小鼠腹腔巨噬细胞,然后以WPG刺激巨噬细胞,再用细胞膜磷脂荧光探针标记细胞,最后采用激光共聚焦显微镜结合激光漂白后荧光恢复技术检测巨噬细胞的膜脂流动性。结果WPG刺激组反映小鼠腹腔巨噬细胞膜脂流动性的平均荧光恢复率明显高于对照组(P〈0.01)。结论分叉双歧杆菌的完整肽聚糖可提高巨噬细胞膜脂流动性。  相似文献   

11.
We describe the construction of a video-rate two-photon laser scanning microscope, compare its performance to a similar confocal microscope, and illustrate its use for imaging local Ca(2+) transients from cortical neurons in brain slices. Key features include the use of a Ti-sapphire femtosecond laser allowing continuous tuning over a wide (700-1000 nm) wavelength range, a resonant scanning mirror to permit frame acquisition at 30 Hz, and efficient wide-field fluorescence detection. Two-photon imaging provides compelling advantages over confocal microscopy in terms of improved imaging depth and reduced phototoxicity and photobleaching, but the high cost of commercial instruments has limited their widespread adoption. By constructing one's own system the expense is greatly reduced without sacrifice of performance, and the microscope can be more readily tailored to specific applications.  相似文献   

12.
Traditional imaging with one-photon confocal microscopy and organic fluorophores poses several challenges for the visualization of vascular tissue, including autofluorescence, fluorophore crosstalk, and photobleaching. We studied human coronary arteries (HCAs) and mouse aortas with a modified immunohistochemical (IHC) "en face" method using quantum dot (Qdot) bioconjugates and two-photon excitation laser scanning microscopy (TPELSM). We demonstrated the feasibility of multilabeling intimal structures by exciting multicolored Qdots with only one laser wavelength (750 nm). Detailed cell structures, such as the granular appearance of von Willebrand factor (VWF) and the subcellular distribution of endothelial nitric oxide synthase, were visualized using green dots (525 nm), even when the emission maximum of these Qdots overlapped that of tissue autofluorescence (510-520 nm). In addition, sensitive fluorescence quantification of vascular cell adhesion molecule 1 expression at areas of varying hemodynamics (intercostal branches vs. nonbranching areas) was performed in normal C57Bl/6 mice. Finally, we took advantage of the photostability of Qdots and the inherent three-dimensional (3D) resolution of TPELSM to obtain large z-stack series without photobleaching. This innovative en face method allowed simple multicolor profiling, highly sensitive fluorescence quantitation, and 3D visualization of the vascular endothelium with excellent spatial resolution. This is a promising technique to define the spatial and temporal interactions of endothelial inflammatory markers and quantify the effects of different interventions on the endothelium.  相似文献   

13.
Fluorescent resonance energy transfer (FRET) imaging techniques can be used to visualize protein-protein interactions in real-time with subcellular resolution. Imaging of sensitized fluorescence of the acceptor, elicited during excitation of the donor, is becoming the most popular method for live FRET (3-cube imaging) because it is fast, nondestructive, and applicable to existing widefield or confocal microscopes. Most sensitized emission-based FRET indices respond nonlinearly to changes in the degree of molecular interaction and depend on the optical parameters of the imaging system. This makes it difficult to evaluate and compare FRET imaging data between laboratories. Furthermore, photobleaching poses a problem for FRET imaging in timelapse experiments and three-dimensional reconstructions. We present a 3-cube FRET imaging method, E-FRET, which overcomes both of these obstacles. E-FRET bridges the gap between the donor recovery after acceptor photobleaching technique (which allows absolute measurements of FRET efficiency, E, but is not suitable for living cells), and the sensitized-emission FRET indices (which reflect FRET in living cells but lack the quantitation and clarity of E). With E-FRET, we visualize FRET in terms of true FRET efficiency images (E), which correlate linearly with the degree of donor interaction. We have defined procedures to incorporate photobleaching correction into E-FRET imaging. We demonstrate the benefits of E-FRET with photobleaching correction for timelapse and three-dimensional imaging of protein-protein interactions in the immunological synapse in living T-cells.  相似文献   

14.
Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy.  相似文献   

15.
This paper reports on the use of alkaline phosphatase cytochemistry and combined conventional and confocal reflection and fluorescence scanning light microscopic modes in the study of human marrow stroma. It was found that the end product of the enzyme reaction using Napthol AS phosphate as substrate and Fast Blue BB as coupler reflected the 633 nm (red) light from a Helium-Neon laser. Serial optical sections suitable for 3-D reconstruction and selectively depicting the marrow reticulum cells could be obtained from thick glycol methacrylate sections reacted for Alkaline phosphatase. Furthermore, the yellow background of uncoupled diazonium salt over cytochemically unreactive structures in the same specimens and fields was used for imaging haemopoietic cell mass by operating the microscope at 488 nm (argon ion laser, blue-green). These methods may offer advantages in the investigation of the bone marrow stroma and its interplay with haemopoiesis and osteogenesis in normal and disease conditions.  相似文献   

16.
Baltimore has been the home of numerous biophysical studies using light to probe cells. One such study, quantitative measurement of lateral diffusion of rhodopsin, set the standard for experiments in which recovery after photobleaching is used to measure lateral diffusion. Development of this method from specialized microscopes to commercial scanning confocal microscopes has led to widespread use of the technique to measure lateral diffusion of membrane proteins and lipids, and as well diffusion and binding interactions in cell organelles and cytoplasm. Perturbation of equilibrium distributions by photobleaching has also been developed into a robust method to image molecular proximity in terms of fluorescence resonance energy transfer between donor and acceptor fluorophores.  相似文献   

17.
Fluorescence photobleaching methods have been widely used to study diffusion processes in the plasma membrane of single living cells and other membrane systems. Here we describe the application of a new photobleaching technique, scanning microphotolysis. Employing a recently developed extension module to a commercial confocal microscope, an intensive laser beam was switched on and off during scanning according to a user definable image mask. Thereby the location, geometry, and number of photolysed spots could be chosen arbitrarily, their size ranging from tens of micrometers down to the diffraction limit. Therewith we bleached circular areas on the surface of single living 3T3 cells labeled with the fluorescent lipid analog NBD-HPC. Subsequently, the fluorescence recovery process was observed using the attenuated laser beam for excitation. This yielded image stacks representing snapshots of the spatial distribution of fluorescent molecules. From these we computed the radial distribution functions of the photobleached dye molecules. The variance of these distributions is linearly related to the diffusion constant, time, and the mobile fraction of the diffusing species. Furthermore, we compared directly the theoretically expected and measured distribution functions, and could thus determine the diffusion coefficient from each single image. The results of these two new evaluation methods (D = 0.3 +/- 0.1 micron 2/s) agreed well with the outcome of conventional fluorescence recovery measurements. We show that by scanning microphotolysis information on dynamical processes such as diffusion of lipids or proteins can be acquired at the superior spatial resolution of a confocal laser scanning microscope.  相似文献   

18.
Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET) experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX) technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF) microscopy.  相似文献   

19.
Light-sheet based fluorescence microscopy (LSM) is an optical technique that becomes more and more popular for multi-view imaging of in vivo sample in its physiological environment. LSM combines the advantages of the direct optical sectioning to the ones of optical tomography by angular scanning. In fact, a thin light-sheet illuminates laterally a section of the sample, thus limiting the effects of photobleaching and phototoxicity only to the plane of interest. The spatial resolution can be improved by combining multiple views obtained along different angle into a single data, leading to a 3D isotropic rendering of the sample. Such an approach provides several advantages in comparison to conventional 3D microscopic techniques: confocal and multiphoton microscopies. It makes LSM an optical tool suited for imaging specimens with a subcellular resolution even inside an embryo and with temporal resolution adapted for real-time monitoring of biological processes.  相似文献   

20.
Fluorescence recovery after photobleaching (FRAP) using confocal laser scanning microscopes (confocal FRAP) has become a valuable technique for studying the diffusion of biomolecules in cells. However, two-dimensional confocal FRAP sometimes yields results that vary with experimental setups, such as different bleaching protocols and bleaching spot sizes. In addition, when confocal FRAP is used to measure diffusion coefficients (D) for fast diffusing molecules, it often yields D-values that are one or two orders-of-magnitude smaller than that predicted theoretically or measured by alternative methods such as fluorescence correlation spectroscopy. Recently, it was demonstrated that this underestimation of D can be corrected by taking diffusion during photobleaching into consideration. However, there is currently no consensus on confocal FRAP theory, and no efforts have been made to unify theories on conventional and confocal FRAP. To this end, we generalized conventional FRAP theory to incorporate diffusion during photobleaching so that analysis by conventional FRAP theory for a circular region of interest is easily applicable to confocal FRAP. Finally, we demonstrate the accuracy of these new (to our knowledge) formulae by measuring D for soluble enhanced green fluorescent protein in aqueous glycerol solution and in the cytoplasm and nucleus of COS7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号