首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2 h-1 at 28 degrees C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass production but lowered specific phenol and TCE degradation rates. The maximum potential for TCE degradation was about 1.1 g per day per g of cell protein. Cell growth and degradation kinetic parameters were used in the design of a recirculating bioreactor for TCE degradation. In this reactor, the total amount of TCE degraded increased as either reaction time or biomass was increased. TCE degradation was observed up to 300 microM TCE with no significant decreases in rates. On the average, this reactor was able to degrade 0.7 g of TCE per day per g of cell protein. These results demonstrate the feasibility of TCE bioremediation through the use of bioreactors.  相似文献   

2.
Cometabolism of trichloroethylene (TCE) by phenol-fed enrichments was evaluated in four reactors with distinct phenol feeding patterns. The reactors were inoculated from the same source, operated at the same average dilution rate, and received the same mass of phenol over time. Only the timing of phenol addition differed. Reactor C received phenol continuously; reactor SC5 received phenol semicontinuously--alternating between 5 h of feed and 3 h without feed; reactor SC2 alternated between 2 h of feed and 6 h without feed; and reactor P received a single pulse every 24 h. The structure of the enrichments and their capacity for TCE transformation were analyzed. In long-term operation, reactors C and SC5 were dominated by fungi, had higher levels of predators, were more susceptible to biomass fluctuations, and exhibited reduced capacity for TCE transformation. Reactors P and SC2 were characterized by lower levels of fungi, higher bacterial biomass, higher concentrations of TCE-degrading organisms, and higher rates of TCE transformation. After 200 days of operation, rates of TCE transformation increased 10-fold in reactor P, resulting in TCE transformation rates that were 20 to 100 times higher than the rates of the other reactor communities. The cause of this shift is unknown. Isolates capable of the highest rates of TCE transformation were obtained from reactor P. We conclude that cometabolic activity depends upon microbial community structure and that the community structure can be manipulated by altering the growth substrate feeding pattern.  相似文献   

3.
The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.  相似文献   

4.
The effects of more than 2 years of trichloroethene (TCE) application on community succession and function were studied in two aerobic sequencing batch reactors. One reactor was fed phenol, and the second reactor was fed both phenol and TCE in sequence twice per day. After initiation of TCE loading in the second reactor, the TCE transformation rates initially decreased, but they stabilized with an average second-order rate coefficient of 0.044 liter mg(-1) day(-1) for 2 years. In contrast, the phenol-fed reactor showed higher and unstable TCE transformation rates, with an average rate coefficient of 0.093 liter mg(-1) day(-1). Community analysis by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes showed that the phenol-plus-TCE-fed reactor had marked changes in community structure during the first 100 days and remained relatively stable afterwards, corresponding to the period of stable function. In contrast, the community structure of the phenol-fed reactor changed periodically, and the changes coincided with the periodicity observed in the TCE transformation rates. Correspondence analysis of each reactor community showed that different community structures corresponded with function (TCE degradation rate). Furthermore, the phenol hydroxylase genotypes, as determined by restriction fragment length polymorphism analysis, corresponded to community structure patterns identified by T-RFLP analysis and to periods when the TCE transformation rates were high. Long-term TCE stress appeared to select for a different and stable community structure, with lower but stable TCE degradation rates. In contrast, the community under no stress exhibited a dynamic structure and dynamic function.  相似文献   

5.
In this paper, we report on the kinetics of phenol degradation and cell growth in continuous cultures of suspended cells of Bacillus thermoleovorans sp. A2 at 65 degrees C. A high yield coefficient of Y(x/s)=0.84 g cell dry weight g(-1) phenol was measured at a dilution rate of 0.5 h(-1). At the same dilution rate the coefficient for maintenance metabolism (m(s)) was determined to be 0.045 g phenol g(-1) cell dry weight h(-1). The maximal growth rate (wash-out) determined at a phenol inlet concentration of 188 mg l(-1) was 0.9 h(-1). Up to 7 g phenol l(-1) per day were degraded in a continuously operated 2-l stirred tank reactor with suspended cells (feed concentration 660 mg l(-1)). Additionally, yield coefficients for oxygen and ammonium are reported.  相似文献   

6.
The effects of more than 2 years of trichloroethene (TCE) application on community succession and function were studied in two aerobic sequencing batch reactors. One reactor was fed phenol, and the second reactor was fed both phenol and TCE in sequence twice per day. After initiation of TCE loading in the second reactor, the TCE transformation rates initially decreased, but they stabilized with an average second-order rate coefficient of 0.044 liter mg−1 day−1 for 2 years. In contrast, the phenol-fed reactor showed higher and unstable TCE transformation rates, with an average rate coefficient of 0.093 liter mg−1 day−1. Community analysis by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes showed that the phenol-plus-TCE-fed reactor had marked changes in community structure during the first 100 days and remained relatively stable afterwards, corresponding to the period of stable function. In contrast, the community structure of the phenol-fed reactor changed periodically, and the changes coincided with the periodicity observed in the TCE transformation rates. Correspondence analysis of each reactor community showed that different community structures corresponded with function (TCE degradation rate). Furthermore, the phenol hydroxylase genotypes, as determined by restriction fragment length polymorphism analysis, corresponded to community structure patterns identified by T-RFLP analysis and to periods when the TCE transformation rates were high. Long-term TCE stress appeared to select for a different and stable community structure, with lower but stable TCE degradation rates. In contrast, the community under no stress exhibited a dynamic structure and dynamic function.  相似文献   

7.
A continuous-feed recycle bioreactor was used to study the kinetics of methanogenic degradation of phenol at 35 degrees C by bacteria supported on a bed of granular activated carbon (GAC). At dilution rates well above the growth rate of the culture, the cells not only populated the GAC, but also formed a layer of granular biomass. This layer was stabilized by the presence of the GAC, and accounted for over half of the phenol-degrading activity in the bioreactor. The specific phenol degradation rates for GAC-attached biomass, suspended biomass, and granular biomass were all in the range 0.15 to 0.22 mg phenol/mg volatile solids per day as measured under pseudo-steady-state conditions. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
The potential of aerobic granular sludge in co-metabolic removal of recalcitrant substances was evaluated using trichloroethylene (TCE) as the model compound. Aerobic granules cultivated in a sequencing batch reactor with phenol as the growth substrate exhibited TCE and phenol degradation activities lower than previously reported values. Depletion of reducing energy and diffusion limitation within the granules were investigated as the possible rate limiting factors. Sodium formate and citrate were supplied to the granules in batch studies as external electron sources. No significant enhancing effect was observed on the instant TCE transformation rates, but 10 mM formate could improve the ultimate transformation capacity by 26 %. Possible diffusion barrier was studied by sieving the biomass into five size fractions, and determining their specific TCE and phenol degradation rates and capacities. Biomass in the larger size fractions generally showed lower activities. Large granules of >700 μm diameter exhibited only 22 % of the flocs’ TCE transformation capacity and 35 % of its phenol dependent SOUR, indicating the possible occurrence of diffusion limitation in larger biomass. However, the highest specific TCE transformation rate was observed with the fraction that mostly consisted of small granules (150–300 μm), suggesting an optimal size range while applying aerobic granules in TCE co-metabolic removal.  相似文献   

9.
Pseudomonas putida ATCC 11172 was grown in continuous culture with phenol as the only carbon and energy source; a culture practically without biofilm was compared with biofilm cultures of differing surface area/volume ratios. The biofilm did not significantly affect the maximal suspended cell concentration in the effluent, but it increased the maximal phenol reduction rate from 0.23 g/liter per h (without biofilm) to 0.72 g/liter per h at the highest biofilm level (5.5 cm2 of biofilm surface per ml of reactor volume). The increase in phenol reduction rate was linear up to the surface area/volume ratio of 1.4 cm2/ml. The continuous cultures with biofilms could tolerate a higher phenol concentration of the medium (3.0 g/liter) than the nonbiofilm system (2.5 g/liter). At higher dilution rates an intermediate product, 2-hydroxymuconic semialdehyde, accumulated in the culture. When the biomass of the effluent started to decrease, the concentration of 2-hydroxymuconic semialdehyde reached a peak value. We conclude that biofilms in continuous culture have the potential to enhance the aerobic degradation of aromatic compounds.  相似文献   

10.
Pseudomonas putida ATCC 11172 was grown in continuous culture with phenol as the only carbon and energy source; a culture practically without biofilm was compared with biofilm cultures of differing surface area/volume ratios. The biofilm did not significantly affect the maximal suspended cell concentration in the effluent, but it increased the maximal phenol reduction rate from 0.23 g/liter per h (without biofilm) to 0.72 g/liter per h at the highest biofilm level (5.5 cm2 of biofilm surface per ml of reactor volume). The increase in phenol reduction rate was linear up to the surface area/volume ratio of 1.4 cm2/ml. The continuous cultures with biofilms could tolerate a higher phenol concentration of the medium (3.0 g/liter) than the nonbiofilm system (2.5 g/liter). At higher dilution rates an intermediate product, 2-hydroxymuconic semialdehyde, accumulated in the culture. When the biomass of the effluent started to decrease, the concentration of 2-hydroxymuconic semialdehyde reached a peak value. We conclude that biofilms in continuous culture have the potential to enhance the aerobic degradation of aromatic compounds.  相似文献   

11.
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.  相似文献   

12.
The yeast Pachysolen tannophilus was entrapped in calcium alginate beads to ferment D-xylose on a continous basis in the presence of high cell densities. Experimental operating variables included the feed D-xylose concentration, the dilution rate, and the fermentor biomass concentration. Under favorable operating conditions, cultures retained at least 50% of their initial productivity after 26 days of operation. The specific ehanol production rate was dependent on the substrate level in the fermentor, passing through an optimum when the D-xylose concentration was between 28 and 35 g/L. Consequently, reactor productivity increased with dilution rate and feed D-xylose concentration until a maximum was reached. The ethanol content of the effluent always decreased with increasing dilution rate, but excessive dilution rates diminished the ethanol content without increasing productivity. Unlike production rate, ethanol yield declined monotonically from 0.35 g/g as the fermentor substrate concentration increased. The yield was 69% of that theoretically possible when the D-xylose concentration was near zero, as opposed to 42% when it was in the range supporting the optimum specific rate of ethanol production. As long as D-xylose was supplied to cells faster than they could consume it, productivity increased with the mass of cells immobilized. The effectiveness factor associated with the calcium alginte beads used in this system was 0.4, indicating that only 40% of the entrapped biomass was effective in converting D-xylose to ethanol because of diffusion limitations.  相似文献   

13.
AIMS: The aim of this study is to evaluate the utility of aerobically grown microbial granules for the biological treatment of phenol-containing wastewater. METHODS AND RESULTS: A column-type sequential aerobic sludge blanket reactor was inoculated with activated sludge and fed with phenol as the sole carbon source, at a rate of 1.5 g phenol l-1 d-1. Aerobically grown microbial granules first appeared on day 9 of reactor operation and quickly grew to displace the seed flocs as the dominant form of biomass in the reactor. These granules were compact and regular in appearance, and consisted of bacterial rods and cocci and fungi embedded in an extracellular polymeric matrix. The granules had a mean size of 0.52 mm, a sludge volume index of 40 ml g-1 and a specific oxygen utilization rate of 110 mg oxygen g VSS-1 h-1 (VSS stands for volatile suspended solids). Specific phenol degradation rates increased with phenol concentration from 0 to 500 mg phenol l-1, peaked at 1.4 g phenol g VSS-1 d-1, and declined with further increases in phenol concentration as substrate inhibition effects became important. CONCLUSIONS: Aerobically grown microbial granules were successfully cultivated in a reactor maintained at a loading rate of 1.5 g phenol l-1 d-1. The granules exhibited a high tolerance towards phenol. Significant rates of phenol degradation were attained at phenol concentrations as high as 2 g l-1. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the ability of aerobically grown microbial granules to degrade phenol. These granules appear to represent an excellent immobilization strategy for microorganisms to biologically remove phenol and other toxic chemicals in high-strength industrial wastewaters.  相似文献   

14.
Acceleration-stat (A-stat) cultivations in which the dilution rate is continuously changed at a constant acceleration rate, leading to different average light intensities inside the photobioreactor, can supply more information and reduce experimental time compared with chemostat cultivations. The A-stat was used to optimize the biomass and product yield of continuous cultures of the microalgae D. tertiolecta in a flat-panel reactor. In this study, four different accelerations were studied, a pseudo steady state was maintained at acceleration rates of 0.00016 and 0.00029 h(-2) and results were similar to those of the chemostat. An increase in the acceleration rate led to an increase in the deviation between results obtained in the A-stat and in the chemostats. We concluded that it is advantageous to use the A-stat instead of chemostats to determine culture characteristics and optimize a specific photobioreactor. The effect of average light intensity inside the photobioreactor on the production of vitamins C and E, lutein, and beta-carotene was studied using the A-stat. The highest concentrations of these products were 3.48 +/- 0.46, 0.33 +/- 0.06, 5.65 +/- 0.24, and 2.36 +/- 0.38 mg g(-1), respectively. These results were obtained at different average light intensities, showing the importance of optimizing each product on light intensity.  相似文献   

15.
Application of Vitreoscilla hemoglobin (VHb) technology to 2-CBA degradation by Burkholderia cepacia strain DNT under hypoxic conditions was studied in continuous culture chemostats. Dechlorination abilities of both recombinant (VHb gene (vgb) containing) and untransformed cells were investigated at various dilution rates to ensure complete degradation of 2-CBA. As the dilution rate increased from 0.025 to 0.25 h(-1), the ratios of chloride release to degraded 2-CBA concentration decreased from 0.95 to 0.72 and from 0.89 to 0.39 for recombinant and untransformed cells, respectively. A nonstoichiometric relationship between chloride release and 2-CBA degradation was more pronounced for untransformed cells. Recombinant cell densities were 0.1-0.2. g L(-1) greater than untransformed cell densities for a range of dilution rates. As the dilution rate increased, the oxygen uptake rate (OUR) and the substrate utilization rate (SUR) decreased for both strains. The OUR/SUR ratio increased as the dilution rate increased for both strains but was much higher for the recombinant strain compared to untransformed cells. The specific 2-CBA degradation rate of recombinant cells was greater than that of untransformed cells (1.17 vs. 0.46 mg CBA (mg) day(-1), and half-saturation constants for recombinant cells were lower than those of untransformed cells (0.18 and 0.32 mg CBA L(-1), respectively). The pseudo-first-order degradation constants, k(1CBA) and k(1ACE), were higher for recombinant cells (6.5 L (mg cells)(-1) day(-1) and 95.6 L (mg cells)(-1) day(-1), respectively) than those of untransformed cells (1.44 L (mg cells)(-1) day(-1) and 73.7 L (mg cells)(-1) day(-1), respectively).  相似文献   

16.
Selenomonas ruminantium HD4 and Bacteroides ruminicola B(1)4 were grown in continuous culture with glucose as the energy source, and heat production was measured continuously with a microcalorimeter. Because the bacteria were grown under steady-state conditions, it was possible to calculate complete energy balances for substrate utilization and product formation (cells, fermentation acids, and heat). As the dilution rate increased from 0.04 to 0.60 per h, the heat of fermentation declined from 19 to 2% and from 34 to 8% for S. ruminantium and B. ruminicola, respectively. At slow dilution rates the specific rate of heat production remained relatively constant (135 mW/g [dry weight] or 190 mW/g of protein for S. ruminantium and 247 mW/g [dry weight] or 467 mW/g of protein for B. ruminicola). Since the heat due to growth-related functions was small compared to maintenance expenditures, total heat production provided a reasonable estimate of maintenance under glucose-limiting conditions. As the dilution rate was increased, glucose eventually accumulated in the chemostat vessel and the specific rates of heat production increased more than twofold. Pulses of glucose added to glucose-limited cultures (0.167 per h) caused an immediate doubling of heat production and little increase in cell protein. These experiments indicate that bacterial maintenance energy is not necessarily a constant and that energy source accumulation was associated with an increase in heat production.  相似文献   

17.
Degradation of phenol and benzoic acid was studied in a fluidized-bed reactor (liquid volume 2.17 L) under nonsterile conditions with special emphasis on maximizing the flow through the reactor and investigating reactor performance at fluctuating feeds. Reactor response to substrate pulses was investigated by applying substrate square-wave inputs at a liquid flow of 1.00 L h(-1). A twofold increase of the phenol and benzoic acid feed concentrations for 2.5 h did not lead to accumulation and breakthrough. The cells were able to survive four to fivefold increases of the feed concentration for 1 h without loss of viability, although the phenol pulse lead to phenol accumulation in the reactor. Reactor performance at constantly fluctuating loads was investigated by varying the feed concentrations using sine wave functions. No accumulation of phenol or benzoic acid was observed. Influence of induction was studied using shift experiments. After 35 days of operation (369 hydrodynamic residence times) with phenol as sole substrate (carbon source) the reactor was able to mineralize benzoic acid without any adaptation or lag phase. The capability of phenol degradation, on the other hand, was lost by most cells after only 3 days operation with benzoic acid as the sole substrate. The experiments underline the importance of induction. In order to maximize the flow through the reactor, the liquid flow was increased stepwise while the feed concentrations were reduced correspondingly, keeping the volumetric conversion rates of phenol (0.24 g L(-1) h(-1)) and benzoic acid (0.17 g L(-1) h(-1)) constant. By this means, liquid flow could be increased up to 13.32 L h(-1), which was more than 20-fold higher than the maximum liquid flow achievable in a chemostat using the same conditions.  相似文献   

18.
AIMS: The aim of this investigation was to develop an empirical model for the autotrophic biodegradation of thiocyanate using an activated sludge reactor. METHODS AND RESULTS: The methods used for this purpose included the use of a laboratory scale activated sludge reactor unit using thiocyante feed concentrations from 200 to 550 mg x l(-1). Reactor effluent concentrations of <1 mg x l(-1) thiocyanate were consistently achieved for the entire duration of the investigation at a hydraulic retention time of 8 h, solids (biomass) retention of 18 h and biomass (dry weight) concentrations ranging from 2 to 4 g x l(-1). A biomass specific degradation rate factor was used to relate thiocyanate degradation in the reactor to the prevailing biomass and thiocyanate feed concentrations. A maximum biomass specific degradation rate of 16 mg(-1) x g(-1) x h(-1) (mg thiocyanate consumed per gram biomass per hour) was achieved at a thiocyanate feed concentration of 550 mg x l(-1). The overall yield coefficient was found to be 0.086 (biomass dry weight produced per mass of thiocyanate consumed). CONCLUSION: Using the results generated by this investigation, an empirical model was developed, based on thiocyanate feed concentration and reactor biomass concentration, to calculate the required absolute hydraulic retention time at which a single-stage continuously stirred tank activated sludge reactor could be operated in order to achieve an effluent concentration of <1 mg x l(-1). The use of an empirical model rather than a mechanistic-based kinetic model was proposed due to the low prevailing thiocyanate concentrations in the reactor. SIGNIFICANCE AND IMPACT OF THE STUDY: These results represent the first empirical model, based on a comprehensive data set, that could be used for the design of thiocyanate-degrading activated sludge systems.  相似文献   

19.
Immobilized yeast cells in agar gel beads were used in a packed bed reactor for the production of ethanol from cane molasses at 30°C, pH 4.5. The maximum productivity, 79.5g ethanol/l.h was obtained with 195g/l reducing sugar as feed. Substrate (64.2%) was utilized at a dilution of 1.33h-1. The immobilized cell reactor was operated continuously at a constant dilution rate of 0.67h-1 for 100 days. The maximum specific ethanol productivity and specific sugar uptake rate were 0.610g ethanol/g cell.h and 1.275g sugar/g cell.h, respectively.  相似文献   

20.
The cell composition of bakers' yeast in a continuous culture was determined for different dilution rates. Also, the cellular response to heat stress in terms of trehalose, RNA, glycogen and protein was determined at a specified dilution rate of 0.1/h. The amount of storage saccharides, trehalose and glycogen, was found to decrease whereas the amount of RNA and protein increased with increasing dilution rates. As the dilution rate was increased from 0.1 to 0.4/h at 0.05 intervals the steady-state trehalose content decreased from 33 to 8.6 mg/g biomass, and glycogen content from 150 to 93 mg/g biomass. On the other hand, the protein content increased from 420 to 530 mg/g biomass and the RNA content from 93 to 113 mg/g biomass. Heat stress was applied by increasing the medium temperature from 30 to 36, 38 or 40°C at constant dilution rates. The highest amount of trehalose accumulation, 108 mg/g biomass, was achieved when heat stress at 38°C was applied. The protein content, on the other hand, decreased from 350 to 325 mg/g biomass at the end of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号