首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcal nuclease is found in two folded conformations that differ in the isomerization of the Lys 116-Pro 117 peptide bond, resulting in two different conformations of the residue 112-117 loop. The cis form is favored over the trans with an occupancy of 90%. Previous mutagenesis studies have shown that when Lys 116 is replaced by glycine, a trans conformation is stabilized relative to the cis conformation by the release of steric strain in the trans form. However, when Lys 116 is replaced with alanine, the resulting variant protein is identical to the wild-type protein in its structure and in the dominance of the cis configuration. The results of these studies suggested that any nuclease variant with a non-glycine residue at position 116 should also favor the cis form because of steric requirements of the beta-carbon at this position. In this report, we present a structural analysis of four nuclease variants with substitutions at position 116. Two variants, K116E and K116M, follow the "beta-carbon" hypothesis by favoring the cis form. Furthermore, the crystal structure of K116E is nearly identical to that of the wild-type protein. Two additional variants, K116D and K116N, provide exceptions to this simple "beta-carbon" rule in that the trans conformation is stabilized relative to the cis configuration by these substitutions. Crystallographic data indicate that this stabilization is effected through the addition of tertiary interactions between the side chain of position 116 with the surrounding protein and water structure. The detailed trans conformation of the K116D variant appears to be similar to the trans conformation observed in the K116G variant, suggesting that these two mutations stabilize the same conformation but through different mechanisms.  相似文献   

2.
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

3.
Thermally unfolded staphylococcal nuclease has been rapidly quenched to temperatures near 0 degree C and the refolding behavior examined using an NMR kinetic experiment. Unfolded protein, exhibiting random coil chemical shifts, persists following the quench and refolds in two distinct kinetic phases. A protein folding intermediate with a trans Lys 116-Pro 117 peptide bond is transiently overpopulated and relaxes to the predominantly cis native cis-trans equilibrium. The rate of trans-->cis isomerization in the native-like nuclease intermediate is approximately 100-fold faster than that observed in a Lys-Pro model peptide. The activation enthalpy of 20 kcal/mol observed for the nuclease Lys 116-Pro 117 peptide bond is comparable to that observed for other X-Pro isomerizations.  相似文献   

4.
Antifreeze proteins (AFPs) depress the freezing point of aqueous solutions by binding to and inhibiting the growth of ice. Whereas the ice-binding surface of some fish AFPs is suggested by their linear, repetitive, hydrogen bonding motifs, the 66-amino-acid-long Type III AFP has a compact, globular fold without any obvious periodicity. In the structure, 9 beta-strands are paired to form 2 triple-stranded antiparallel sheets and 1 double-stranded antiparallel sheet, with the 2 triple sheets arranged as an orthogonal beta-sandwich (Sönnichsen FD, Sykes BD, Chao H, Davies PL, 1993, Science 259:1154-1157). Based on its structure and an alignment of Type III AFP isoform sequences, a cluster of conserved, polar, surface-accessible amino acids (N14, T18, Q44, and N46) was noted on and around the triple-stranded sheet near the C-terminus. At 3 of these sites, mutations that switched amide and hydroxyl groups caused a large decrease in antifreeze activity, but amide to carboxylic acid changes produced AFPs that were fully active at pH 3 and pH 6. This is consistent with the observation that Type III AFP is optimally active from pH 2 to pH 11. At a concentration of 1 mg/mL, Q44T, N14S, and T18N had 50%, 25%, and 10% of the activity of wild-type antifreeze, respectively. The effects of the mutations were cumulative, such that the double mutant N14S/Q44T had 10% of the wild-type activity and the triple mutant N14S/T18N/Q44T had no activity. All mutants with reduced activity were shown to be correctly folded by NMR spectroscopy. Moreover, a complete characterization of the triple mutant by 2-dimensional NMR spectroscopy indicated that the individual and combined mutations did not significantly alter the structure of these proteins. These results suggest that the C-terminal beta-sheet of Type III AFP is primarily responsible for antifreeze activity, and they identify N14, T18, and Q44 as key residues for the AFP-ice interaction.  相似文献   

5.
An expanded, highly dynamic denatured state of staphylococcal nuclease exhibits a native-like topology in the apparent absence of tight packing and fixed hydrogen bonds (Gillespie JR, Shortle D, 1997, J Mol Biol 268:158-169, 170-184). To address the physical basis of the long-range spatial ordering of this molecule, we probe the effects of perturbations of the sequence and solution conditions on the local chain dynamics of a denatured 101-residue fragment that is missing the first three beta strands. Structural interactions between chain segments are inferred from correlated changes in the motional behavior of residues monitored by 15N NMR relaxation measurements. Restoration of the sequence corresponding to the first three beta strands significantly increases the average order of all chain segments that form the five strand beta barrel including loops but has no effect on the carboxy terminal 30 residues. Addition of the denaturing salt sodium perchlorate enhances ordering over the entire sequence of this fragment. Analysis of seven different substitution mutants points to a complex set of interactions between the hydrophobic segment corresponding to beta strand 5 and the remainder of the chain. General patterns in the data suggest there is a hierarchy of native-like interactions that occur transiently in the denatured state and are consistent with the overall topology of the denatured state ensemble being determined by many coupled local interactions rather than a few highly specific long-range interactions.  相似文献   

6.
We have used (15)N- and (2)H-NMR spin relaxation experiments to study the response of backbone and side-chain dynamics when a leucine or valine is substituted for a completely buried phenylalanine residue in the SH3 domain from the Fyn tyrosine kinase. Several residues show differences in the time scales and temperature dependences of internal motions when data for the three proteins are compared. Changes were also observed in the magnitude of dynamics, with the valine, and to a lesser extent leucine mutant, showing enhanced flexibility compared to the wild-type (WT) protein. The motions of many of the same amide and methyl groups are affected by both mutations, identifying a set of loci where dynamics are sensitive to interactions involving the targeted side chain. These results show that contacts within the hydrophobic core affect many aspects of internal mobility throughout the Fyn SH3 domain.  相似文献   

7.
The structural origin of the decrease in system volume upon protein denaturation by pressure has remained a puzzle for decades. This negative volume change upon unfolding is assumed to arise globally from more intimate interactions between the polypeptide chain and water, including electrostriction of buried charges that become exposed upon unfolding, hydration of the polypeptide backbone and amino acid side chains and elimination of packing defects and internal void volumes upon unfolding of the chain. However, the relative signs and magnitudes of each of these contributing factors have not been experimentally determined. Our laboratory has probed the fundamental basis for the volume change upon unfolding of staphylococcal nuclease (Snase) using variable solution conditions and point mutants of Snase (Royer CA et al., 1993, Biochemistry 32:5222-5232; Frye KJ et al., 1996, Biochemistry 35:10234-10239). Our prior results indicate that for Snase, neither electrostriction nor polar or nonpolar hydration contributes significantly to the value of the volume change of unfolding. In the present work, we investigate the pressure induced unfolding of three point mutants of Snase in which internal cavity size is altered. The experimentally determined volume changes of unfolding for the mutants suggest that loss of internal void volume upon unfolding represents the major contributing factor to the value of the volume change of Snase unfolding.  相似文献   

8.
At low ionic strength, apoplastocyanin forms an unfolded state under non-denaturing conditions. The refolding of this state is sufficiently slow to allow real-time NMR experiments to be performed. Folding of apoplastocyanin, initiated by the addition of salt and followed by real-time 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy, is highly cooperative. A concomitant increase in the intensity of both sequential and long-range nuclear Overhauser effects (NOEs) between backbone amide protons in successive acquisitions of 1H-15N HSQC-NOESY-HSQC spectra provides the first direct observation of the development of structure-specific NOEs as a protein folds. Our results show that the local and long-range interactions in the native apoplastocyanin are formed simultaneously, consistent with highly cooperative formation of the native structure.  相似文献   

9.
J Moult  M N James 《Proteins》1986,1(2):146-163
The feasibility of determining the conformation of segments of a polypeptide chain up to six residues in length in globular proteins by means of a systematic search through the possible conformations has been investigated. Trial conformations are generated by using representative sets of phi, psi, and chi angles that have been derived from an examination of the distributions of these angles in refined protein structures. A set of filters based on simple rules that protein structures obey is used to reduce the number of conformations to a manageable total. The most important filters are the maintenance of chain integrity and the avoidance of too-short van der Waals contacts with the rest of the protein and with other portions of the segment under construction. The procedure is intended to be used with approximate models so that allowance is made throughout for errors in the rest of the structure. All possible main chains are first constructed and then all possible side-chain conformations are built onto each of these. The electrostatic energy, including a solvent screening term, and the exposed hydrophobic area are evaluated for each accepted conformation. The method has been tested on two segments of chain in the trypsin like enzyme from Streptomyces griseus. It is found that there is a wide spread of energies among the accepted conformations, and the lowest energy ones have satisfactorily small root mean square deviations from the X-ray structure.  相似文献   

10.
We recently developed a rapid loop closure algorithm in which bond lengths are scaled to constrain the ends of a segment to match a known distance and then gradually relaxed to their standard values, with boundary constraints maintained. Although the algorithm predicted the Zif286 zinc-finger loop to within approximately 2 A, it had a serious limitation that made its more general use tentative: it omitted the atomic environment of the loop. Here we report an extension of the algorithm to take into account the protein environment surrounding a given loop from the outset of the conformational search and show that it predicts structure with an efficiency and accuracy that could not be achieved without continuous environmental inclusion. The algorithm should be widely applicable to structure determination when complete experimental information is unavailable.  相似文献   

11.
QM and QM/MM energy calculations have been carried out on an atomic resolution structure of liganded triosephosphate isomerase (TIM) that has an active site proline (Pro168) in a planar conformation. The origin of the planarity of this proline has been identified. Steric interactions between the atoms of the proline ring and a tyrosine ring (Tyr166) on one side of the proline prevent the ring from adopting the up pucker (chi1 is approximately -30 degrees), while the side chain of a nearby alanine (Ala171) forbids the down pucker (chi1 is approximately +30 degrees). To obtain a proline conformation that is in agreement with the experimentally observed planar state, a quantum system of sufficient size is required and should at least include the nearby side chains of Tyr166, Ala171, and Glu129 to provide enough stabilization. It is argued that the current force fields for structure optimization do not describe strained protein fragments correctly. The proline is part of a catalytic loop that closes upon ligand binding. Comparison of the proline conformation in different TIM X-ray structures, indicates that in the closed conformation of TIM the proline is planar or nearly planar, while in the open conformation it is down puckered. This suggests that the planarity possibly plays a role in the overall catalytic cycle of TIM, presumable acting as a reservoir of energy that becomes available upon loop opening.  相似文献   

12.
The effect of xylose on the rates of folding and unfolding of staphylococcal nuclease (nuclease) have been investigated using fluorescence-detected pressure-jump relaxation kinetics in order to establish the kinetic basis for the observed stabilization of nuclease by this sugar (Frye KJ, Perman CS, Royer CA, 1996, Biochemistry 35:10234-10239). The activation volumes for both folding and unfolding and the equilibrium volume change for folding were all positive. Their values were within experimental error of those reported previously (Vidugiris GJA, Markley JL, Royer CA, 1995, Biochemistry 34:4909-4912) and were independent of xylose concentration. The major effect of xylose concentration was to increase significantly the rate of folding. The large positive activation volume for folding was interpreted previously as indicating that the rate-limiting step in nuclease folding involves dehydration of a significant amount of surface area. A large effect of xylose on the rate constant for folding provides strong support for this interpretation, because xylose, an osmolyte, stabilizes the folded state of proteins through surface tension effects. These studies further characterize the transition state in nuclease folding as lying closer to the folded, rather than the unfolded state along the folding coordinate in terms of the degree of burial of surface area. The image of the transition state that emerges is consistent with a dry molten globule.  相似文献   

13.
Gel electrophoresis in studies of protein conformation and folding   总被引:10,自引:0,他引:10  
Electrophoresis through polyacrylamide gels is a useful method for distinguishing conformational states of proteins and analyzing the thermodynamic and kinetic properties of transitions between conformations. Although the relationship between protein conformation and electrophoretic mobility is quite complex, relative mobilities provide qualitative estimates of compactness. Conformational states which interconvert slowly on the time scale of the electrophoretic separation can often be resolved, and the rates of interconversion can be estimated. If the transitions are more rapid, then the electrophoretic mobility represents the equilibrium distribution of conformations. Protein unfolding transitions induced by urea are readily studied using slab gels containing a gradient of urea concentration perpendicular to the direction of electrophoresis. Protein applied across the top of such a gel migrates in the presence of continuously varying urea concentrations, and a profile of the unfolding transition is generated directly. Transitions induced by other agents could be studied using analogous gradient gels. Electrophoretic methods are especially suited for studying small quantities of protein, and complex mixtures, since the different components can be separated during the electrophoresis.  相似文献   

14.
Legume lectins are considered to be antinutritional factors (ANF) in the animal feeding industry. Inactivation of ANF is an important element in processing of food. In our study on the stability ofPisum sativum L. lectin (PSL), a conserved hydrophobic amino acid (Val103) in a surface loop was replaced with alanine. The mutant lectin, PSL V103A, showed a decrease in unfolding temperature (T m ) by some 10 °C in comparison with wild-type (wt) PSL, and the denaturation energy (H) is only about 55% of that of wt PSL. Replacement of an adjacent amino acid (Phe104) with alanine did not result in a significant difference in stability in comparison with wt PSL. Both mutations did not change the sugarbinding properties of the lectin, as compared with wt PSL and with PSL from pea seeds, at ambient temperatures. The double mutant, PSL V103A/F104A, was produced inEscherichia coli, but could not be isolated in an active (i.e. sugar-binding) form. Interestingly, the mutation in PSL V103A reversibly affected sugar-binding at 37 °C, as judged from haemagglutination assays. These results open the possibility of production of lectins that are activein planta at ambient temperatures, but are inactive and possibly non-toxic at 37 °C in the intestines of mammals.  相似文献   

15.
Conserved tyrosine-12 of Ectothiorhodospira halophila high-potential iron sulphur protein (HiPIP) iso-I was substituted with phenylalanine (Y12F), histidine (Y12H), tryptophan (Y12W), isoleucine (Y12I), and alanine (Y12A). Variants Y12A and Y12I were expressed to reasonable levels in cells grown at lower temperatures, but decomposed during purification. Variants Y12F, Y12H, and Y12W were substantially destabilized with respect to the recombinant wild-type HiPIP (rcWT) as determined by differential scanning calorimetry over a pH range of 7.0-11.0. Characterization of the Y12F variant by NMR indicates that the principal structural differences between this variant and the rcWT HiPIP result from the loss of the two hydrogen bonds of the Tyr-12 hydroxyl group with Asn-14 O delta 1 and Lys-59 NH, respectively. The effect of the loss of the latter interaction is propagated through the Lys-59/Val-58 peptide bond, thereby perturbing Gly-46. The delta delta GDapp of Y12F of 2.3 kcal/mol with respect to rcWT HiPIP (25 degrees C, pH 7.0) is entirely consistent with the contribution of these two hydrogen bonds to the stability of the latter. CD measurements show that Tyr-12 influences several electronic transitions within the cluster. The midpoint reduction potentials of variants Y12F, Y12H, and Y12W were 17, 19, and 22 mV (20 mM MOPS, 0.2 M sodium chloride, pH 6.98, 25 degrees C), respectively, higher than that of rcWT HiPIP. The current results indicate that, although conserved Tyr-12 modulates the properties of the cluster, its principle function is to stabilize the HiPIP through hydrogen bonds involving its hydroxyl group and electrostatic interactions involving its aromatic ring.  相似文献   

16.
Glutathione-S-transferase (GST)-fusion proteins are used extensively for structural, biochemical, and functional analyses. Although the conformation of the target protein is of critical importance, confirmation of the folded state of the target is often not undertaken or is cumbersome because of the requirement to first remove the GST tag. Here, we demonstrate that it is possible to record conventional (15)N-HSQC NMR spectra of small GST-fusion proteins and that the observed signals arise almost exclusively from the target protein. This approach constitutes a rapid and straightforward means of assessing the conformation of a GST-fusion protein without having to cleave the GST and should prove valuable, both to biochemists seeking to check the conformation of their proteins prior to functional studies and to structural biologists screening protein constructs for suitability as targets for structural studies.  相似文献   

17.
The intrinsic chlorophyll-protein CP 47 is a component of photosystem II which functions in both light-harvesting and oxygen evolution. The large extrinsic loop E of this protein has been shown to interact with the oxygen-evolving site. Previously, Vermaas and coworkers have produced a number of deletions within loop E which yielded mutants which were unable to grow photoautotrophically and which could not evolve oxygen at normal rates. During the course of our site-directed mutagenesis program in Synechocystis 6803, we have altered all of the conserved charged residues which were present within six of these deletions. All ten of these mutants were photoautotrophic and evolved oxygen at normal rates. We speculate that the severe phenotypes of the deletion mutants observed by Vermaas and coworkers in due to large structural perturbations in the extrinsic loop E of CP 47.  相似文献   

18.
Recently developed 2H spin relaxation experiments are applied to study the dynamics of methyl-containing side-chains in the B1 domain of protein L and in a pair of point mutants of the domain, F22L and A20V. X-ray and NMR studies of the three variants of protein L studied here establish that their structures are very similar, despite the fact that the F22L mutant is 3.2kcal/mol less stable. Measurements of methyl 2H spin relaxation rates, which probe dynamics on a picosecond-nanosecond time scale, and three-bond 3J(Cgamma-CO), 3J(Cgamma-N) and 3J(Calpha-Cdelta) scalar coupling constants, which are sensitive to motion spanning a wide range of time-scales, reveal changes in the magnitude of side-chain dynamics in response to mutation. Observed differences in the time-scale of motions between the variants have been related to changes in energetic barriers. Of interest, several of the residues with different motional properties across the variants are far from the site of mutation, suggesting the presence of long-range interactions within the protein that can be probed through studies of dynamics.  相似文献   

19.
Chromatin conformation has been analysed in the brain cortex of adult (24±2 weeks) and old (65±4 weeks) male and female mice. Nuclei purified from different groups of mice were digested with MNase and DNase I for varying time periods (0–90 min), and with endogenous endonucleases for 1 h. MNase and DNase I digestion kinetics showed that the percentage of acid solubility of chromatin was relatively lower in old than adult and in female than male. This was further supported by electrophoretic analysis of nuclease digested DNA fragments. When the nuclei were incubated with only Ca2+or mg2+, no endonuclease digestion was observed. However, under similar conditions, the liver DNA was cleaved substantially. When divalent cations were added together, they activated endogenous endonucleases and digested the brain chromatin. The activity of Ca2+/Mg2+-dependent endogenous endonucleases was higher in male than female. Thus the accessibility of chromatin to MNase, DNase I and endogenous endonucleases was higher in male than female, and MNase as well as DNase I were more active in adult than old. Such sex- and age-dependent conformation of chromatin may attribute to differential expression of genes in the mouse brain.  相似文献   

20.
Structural studies of mammalian prion protein at pH values between 4.5 and 5.5 established that the N-terminal 100 residue domain is flexibly disordered. Here, we show that at pH values between 6.5 and 7.8, i.e. the pH at the cell membrane, the octapeptide repeats in recombinant human prion protein hPrP(23-230) encompassing the highly conserved amino acid sequence PHGGGWGQ are structured. The nuclear magnetic resonance solution structure of the octapeptide repeats at pH 6.2 reveals a new structural motif that causes a reversible pH-dependent PrP oligomerization. Within the aggregation motif the segments HGGGW and GWGQ adopt a loop conformation and a beta-turn-like structure, respectively. Comparison with the crystal structure of HGGGW-Cu(2+) indicates that the binding of copper ions induces a conformational transition that presumably modulates PrP aggregation. The knowledge that the cellular prion protein is immobilized on the cell surface along with our results suggests a functional role of aggregation in endocytosis or homophilic cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号