首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although members of the class I phosphoinositide 3-kinases (PI3Ks) have been implicated in neutrophil inflammatory responses, the contribution of the individual PI3K isoforms in neutrophil activation has not been tractable with the non-selective inhibitors, LY294002 and wortmannin. We have developed a novel series of PI3K inhibitors that is selective for PI3K delta, an isoform expressed predominantly in hematopoietic cells. In addition to being selective between members of class I PI3Ks, representatives of these inhibitors such as IC980033 and IC87114 did not inhibit any protein kinases tested. Utilizing these inhibitors we report here a novel role for PI3K delta in neutrophil activation. Inhibition of PI3K delta with IC980033 and IC87114 blocked both fMLP- and TNF1 alpha-induced neutrophil superoxide generation and elastase exocytosis. The PI3K delta inhibitor IC87114 also blocked TNF1 alpha-stimulated elastase exocytosis from neutrophils in a mouse model of inflammation. To our knowledge, this is the first in vivo efficacy demonstration of a PI3K delta inhibitor in an animal model. Inhibition of PI3K delta, however, had no effect on in vitro neutrophil bactericidal activity and Fc gamma R-stimulated superoxide generation. Thus, PI3K delta plays an essential role in certain signaling pathways of neutrophil activation and appears to be an attractive target for the development of an anti-inflammatory therapeutic.  相似文献   

2.
Tang W  Zhang Y  Xu W  Harden TK  Sondek J  Sun L  Li L  Wu D 《Developmental cell》2011,21(6):1038-1050
Neutrophils, in response to a chemoattractant gradient, undergo dynamic F-actin remodeling, a process important for their directional migration or chemotaxis. However, signaling mechanisms for chemoattractants to regulate the process are incompletely understood. Here, we characterized chemoattractant-activated signaling mechanisms that regulate cofilin dephosphorylation and actin cytoskeleton reorganization and are critical for neutrophil polarization and chemotaxis. In neutrophils, chemoattractants induced phosphorylation and inhibition of GSK3 via both PLCβ-PKC and PI3Kγ-AKT pathways, leading to the attenuation of GSK3-mediated phosphorylation and inhibition of the cofilin phosphatase slingshot2 and an increase in dephosphorylated, active cofilin. The relative contribution of this GSK3-mediated pathway to neutrophil chemotaxis regulation depended on neutrophil polarity preset by integrin-induced polarization of PIP5K1C. Therefore, our study characterizes a signaling mechanism for chemoattractant-induced actin cytoskeleton remodeling and elucidates its context-dependent role in regulating neutrophil polarization and chemotaxis.  相似文献   

3.
Inoue T  Meyer T 《PloS one》2008,3(8):e3068
Phosphatidylinositol 3-OH kinase (PI3K) has been widely studied as a principal regulator of cell polarization, migration, and chemotaxis. Surprisingly, recent studies showed that mammalian neutrophils and Dictyostelium discoideum cells can polarize and migrate in the absence of PI3K activity. Here we directly probe the roles of PI3K and its downstream effector, Rac, in HL-60 neutrophils by using a chemical biology approach whereby the endogenously present enzymes are synthetically activated in less than one minute. We show that uniform activation of endogenous PI3K is sufficient to polarize previously unpolarized neutrophils and trigger effective cell migration. After a delay following symmetrical phosphatidylinositol (3,4,5)-triphosphate (PIP(3)) production, a polarized distribution of PIP(3) was induced by positive feedback requiring actin polymerization. Pharmacological studies argue that this process does not require receptor-coupled trimeric G proteins. Contrary to the current working model, rapid activation of endogenous Rac proteins triggered effective actin polymerization but failed to feed back to PI3K to generate PIP(3) or induce cell polarization. Thus, the increase in PIP(3) concentration at the leading edge is generated by positive feedback with an AND gate logic with a PI3K-Rac-actin polymerization pathway as a first input and a PI3K initiated non-Rac pathway as a second input. This AND-gate control for cell polarization can explain how Rac can be employed for both PI3K-dependent and -independent signaling pathways coexisting in the same cell.  相似文献   

4.
Treponema denticola major outer sheath protein (Msp) inhibits neutrophil chemotaxis in vitro , but key regulatory mechanisms have not been identified. Because the Rac small GTPases regulate directional migration in response to chemoattractants, the objective was to analyse the effects of Msp on formyl -methionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil polarization and Rac activation in murine neutrophils. Msp pretreatment of neutrophils inhibited both polarization and chemotactic migration in response to fMLP. Activation of small GTPases was measured by p21 binding domain (PBD) pulldown assays, followed by Western analysis, using monoclonal anti-Rac1, anti-Rac2, anti-cdc42 and anti-RhoA antibodies. Enriched native Msp selectively inhibited fMLP-stimulated Rac1 activation in a concentration-dependent manner, but did not affect Rac2, cdc42 or RhoA activation. Murine neutrophils transfected with vectors expressing fluorescent probes PAK-PBD-YFP and PH-AKT-RFP were used to determine the effects of Msp on the localization of activated Rac and PI3 kinase products. Real-time confocal images showed that Msp inhibited the polarized accumulation of activated Rac and PI3-kinase products upon exposure to fMLP. The findings indicate that T. denticola Msp inhibition of neutrophil polarity may be due to the selective suppression of the Rac1 pathway.  相似文献   

5.
PI3K plays a fundamental role in regulating neutrophil recruitment into sites of inflammation but the role of the different isoforms of PI3K remains unclear. In this study, we evaluated the role of PI3Kgamma and PI3Kdelta for neutrophil influx induced by the exogenous administration or the endogenous generation of the chemokine CXCL1. Administration of CXCL1 in PI3Kgamma(-/-) or wild-type (WT) mice induced similar increases in leukocyte rolling, adhesion, and emigration in the cremaster muscle when examined by intravital microscopy. The induction of neutrophil recruitment into the pleural cavity or the tibia-femoral joint induced by the injection of CXCL1 was not significantly different in PI3Kgamma(-/-) or WT mice. Neutrophil influx was not altered by treatment of WT mice with a specific PI3Kdelta inhibitor, IC87114, or a specific PI3Kgamma inhibitor, AS605240. The administration of IC87114 prevented CXCL1-induced neutrophil recruitment only in presence of the PI3Kgamma inhibitor or in PI3Kgamma(-/-) mice. Ag challenge of immunized mice induced CXCR2-dependent neutrophil recruitment that was inhibited by wortmannin or by blockade of and PI3Kdelta in PI3Kgamma(-/-) mice. Neutrophil recruitment to bronchoalveolar lavage induced by exogenously added or endogenous production of CXCL1 was prevented in PI3Kgamma(-/-) mice. The accumulation of the neutrophils in lung tissues was significantly inhibited only in PI3Kgamma(-/-) mice treated with IC87114. Neutrophil recruitment induced by exogenous administration of C5a or fMLP appeared to rely solely on PI3Kgamma. Altogether, our data demonstrate that there is a tissue- and stimulus-dependent role of PI3Kgamma and PI3Kdelta for neutrophil recruitment induced by different chemoattractants in vivo.  相似文献   

6.
Trafficking and recruitment of eosinophils during allergic airway inflammation is mediated by the phosphatidylinositol 3-kinase (PI3K) family of signaling molecules. The role played by the p110δ subunit of PI3K (PI3K p110δ) in regulating eosinophil trafficking and recruitment was investigated using a selective pharmacological inhibitor (IC87114). Treatment with the PI3K p110δ inhibitor significantly reduced murine bone marrow-derived eosinophil (BM-Eos) adhesion to VCAM-1 as well as ICAM-1 and inhibited activation-induced changes in cell morphology associated with reduced Mac-1 expression and aberrant cell surface localization/distribution of Mac-1 and α4. Infused BM-Eos demonstrated significantly decreased rolling and adhesion in inflamed cremaster muscle microvessels of mice treated with IC87114 compared with vehicle-treated mice. Furthermore, inhibition of PI3K p110δ significantly attenuated eotaxin-1-induced BM-Eos migration and prevented eotaxin-1-induced changes in the cytoskeleton and cell morphology. Knockdown of PI3K p110δ with siRNA in BM-Eos resulted in reduced rolling, adhesion, and migration, as well as inhibition of activation-induced changes in cell morphology, validating its role in regulating trafficking and migration. Finally, in a mouse model of cockroach antigen-induced allergic airway inflammation, oral administration of the PI3K p110δ inhibitor significantly inhibited airway eosinophil recruitment, resulting in attenuation of airway hyperresponsiveness in response to methacholine, reduced mucus secretion, and expression of proinflammatory molecules (found in inflammatory zone-1 and intelectin-1). Overall, these findings indicate the important role played by PI3K p110δ in mediating BM-Eos trafficking and migration by regulating adhesion molecule expression and localization/distribution as well as promoting changes in cell morphology that favor recruitment during inflammation.  相似文献   

7.
Cell migration is fundamental to the inflammatory response, but uncontrolled cell migration and excess recruitment of neutrophils and other leukocytes can cause damage to the tissue. Here we describe the use of an in vivo model – the Tg(mpx:GFP)i114 zebrafish line, in which neutrophils are labelled by green fluorescent protein (GFP) – to screen a natural product library for compounds that can affect neutrophil migratory behaviour. Among 1040 fungal extracts screened, two were found to inhibit neutrophil migration completely. Subfractionation of these extracts identified sterigmatocystin and antibiotic PF1052 as the active components. Using the EZ-TAXIScan chemotaxis assay, both compounds were also found to have a dosage-dependent inhibitory effect on murine neutrophil migration. Furthermore, neutrophils treated with PF1052 failed to form pseudopods and appeared round in shape, suggesting a defect in PI3-kinase (PI3K) signalling. We generated a transgenic neutrophil-specific PtdIns(3,4,5)P3 (PIP3) reporter zebrafish line, which revealed that PF1052 does not affect the activation of PI3K at the plasma membrane. In human neutrophils, PF1052 neither induced apoptosis nor blocked AKT phosphorylation. In conclusion, we have identified an antibiotic from a natural product library with potent anti-inflammatory properties, and have established the utility of the mpx:GFP transgenic zebrafish for high-throughput in vivo screens for novel inhibitors of neutrophil migration.KEY WORDS: Neutrophil, Recruitment, Migration, Drug screen, Zebrafish  相似文献   

8.
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.  相似文献   

9.
Neutrophils are highly motile leukocytes, and they play important roles in the innate immune response to invading pathogens. Neutrophil chemotaxis requires Rac activation, yet the Rac activators functioning downstream of chemoattractant receptors remain to be determined. We show that DOCK2, which is a mammalian homologue of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City, regulates motility and polarity during neutrophil chemotaxis. Although DOCK2-deficient neutrophils moved toward the chemoattractant source, they exhibited abnormal migratory behavior with a marked reduction in translocation speed. In DOCK2-deficient neutrophils, chemoattractant-induced activation of both Rac1 and Rac2 were severely impaired, resulting in the loss of polarized accumulation of F-actin and phosphatidylinositol 3,4,5-triphosphate (PIP3) at the leading edge. On the other hand, we found that DOCK2 associates with PIP3 and translocates to the leading edge of chemotaxing neutrophils in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. These results indicate that during neutrophil chemotaxis DOCK2 regulates leading edge formation through PIP3-dependent membrane translocation and Rac activation.  相似文献   

10.
Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) regulate cell migration, but the role of PtdIns(3,4,5)P(3)-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P(3) phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P(3) phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P(3) metabolism in living primary cells, we generated a novel transgenic mouse (AktPH-GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P(3.) Time-lapse footage showed rapid, localized binding of AktPH-GFP to the leading edge membrane of chemotaxing ship1(+/+)AktPH-GFP Tg neutrophils, but only diffuse localization in ship1(-/-)AktPH-GFP Tg neutrophils. By directing where PtdIns(3,4,5)P(3) accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.  相似文献   

11.
AGEs (advanced glycation end-products) accumulate in collagen molecules during uraemia and diabetes, two diseases associated with high susceptibility to bacterial infection. Because neutrophils bind to collagen during their locomotion in extravascular tissue towards the infected area we investigated whether glycoxidation of collagen (AGE-collagen) alters neutrophil migration. Type I collagen extracted from rat tail tendons was used for in vitro glycoxidation (AGE-collagen). Neutrophils were obtained from peripheral blood of healthy adult volunteers and were used for the in vitro study of adhesion and migration on AGE- or control collagen. Glycoxidation of collagen increased adhesion of neutrophils to collagen surfaces. Neutrophil adhesion to AGE-collagen was inhibited by a rabbit anti-RAGE (receptor for AGEs) antibody and by PI3K (phosphoinositide 3-kinase) inhibitors. No effect was observed with ERK (extracellular-signal-regulated kinase) or p38 MAPK (mitogen-activated protein kinase) inhibitors. AGE-collagen was able to: (i) induce PI3K activation in neutrophils, and (ii) inhibit chemotaxis and chemokinesis of chemoattractant-stimulated neutrophils. Finally, we found that blocking RAGE with anti-RAGE antibodies or inhibiting PI3K with PI3K inhibitors restored fMLP (N-formylmethionyl-leucyl-phenylalanine)-induced neutrophil migration on AGE-collagen. These results show that RAGE and PI3K modulate adhesion and migration rate of neutrophils on AGE-collagen. Modulation of adhesiveness may account for the change in neutrophil migration rate on AGE-collagen. As neutrophils rely on their ability to move to perform their function as the first line of defence against bacterial invasion, glycoxidation of collagen may participate in the suppression of normal host defence in patients with diabetes and uraemia.  相似文献   

12.
Cell polarization is necessary for directed migration and leukocyte recruitment to inflamed tissues. Recent progress has been made in defining the molecular mechanisms that regulate chemoattractant-induced cell polarity during chemotaxis, including the contribution of phosphoinositide 3-kinase (PI3K)-dependent phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] synthesis at the leading edge. However, less is known about the molecular composition of the cell rear and how the uropod functions during cell motility. Here, we demonstrate that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma661), which generates PtdIns(4,5)P(2), is enriched in the uropod during chemotaxis of primary neutrophils and differentiated HL-60 cells (dHL-60). Using time-lapse microscopy, we show that enrichment of PIPKIgamma661 at the cell rear occurs early upon chemoattractant stimulation and is persistent during chemotaxis. Accordingly, we were able to detect enrichment of PtdIns(4,5)P(2) at the uropod during chemotaxis. Overexpression of kinase-dead PIPKIgamma661 compromised uropod formation and rear retraction similar to inhibition of ROCK signaling, suggesting that PtdIns(4,5)P(2) synthesis is important to elicit the backness response during chemotaxis. Together, our findings identify a previously unknown function for PIPKIgamma661 as a novel component of the backness signal that regulates rear retraction during chemotaxis.  相似文献   

13.
Respiratory burst mediates crucial bactericidal mechanism in neutrophils. However, undesirable respiratory burst leads to pathological inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one (MSF-2), a lignan extracted from the fruit of Melicope Semecarprifolia, on fMLP-induced respiratory burst in human neutrophils and suggests a possible therapeutic approach to ameliorate disease associated with neutrophil hyperactivation. MSF-2 inhibited fMLP-induced neutrophil superoxide anion production, cathepsin G release and migration in human neutrophils isolated from healthy volunteers, reflecting inhibition of phosphatidylinositol 3-kinase (PI3K) activation. Specifically, PI3K/AKT activation results in migration, degranulation and superoxide anion production in neutrophils. MSF-2 suppresses PI3K activation and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production, and consequently inhibits downstream activation of PDK1 and AKT. Further, PI3K also stimulates respiratory burst via PLC-dependent elevation of intracellular calcium. MSF-2 reduces fMLP-mediated PLCγ2 activation and intracellular calcium accumulation notably through extracellular calcium influx in a PI3K and PLC-dependent manner. However, MSF-2 is not a competitive or allosteric antagonist of fMLP. Additionally, in an in vivo study, MSF-2 prevents fMLP-induced neutrophil infiltration and inflammation in mice. In conclusion, MSF-2 opposes fMLP-mediated neutrophil activation and inflammation by inhibiting PI3K activation and subsequent activation of AKT and PLCγ2.  相似文献   

14.
The polarization of tumor cells and leukocytes into a front end and a rear end is a crucial prerequisite for their autonomous, directed movement. Phosphatidylinositol 3-kinase (PI3K) is assumed to play an important role in this polarization process, whereas the results obtained with different cell types and different migration assays widely vary. Thus, we conducted a comparative study on the role of the PI3K in the locomotor activity and directionality of the migration of tumor cells on the example of MDA-MB-468 breast carcinoma cells in comparison with CTLs and neutrophil granulocytes. We used our well-established, collagen-based, three-dimensional migration assay for the investigation of the chemokinesis and chemotaxis of these cells. Our results show that the role of the PI3K in the regulation of migratory activity is distinct between the investigated cell types: the migration of CTLs and MDA-MB-468 cells was impaired by the inhibition of the PI3K with wortmannin, whereas neutrophil granulocytes were only slightly affected. However, neither cell type was impaired in the ability to respond chemotactically to gradients of ligands to G protein-coupled receptors. Thus, the PI3K contributes to the regulation of migratory activity but not to the directionality of migration of MDA-MB-468 breast carcinoma cells. As a further conclusion with regard to cancer treatment, the PI3K is not a suitable target for the inhibition of metastasis formation, because the migration of leukocytes is also affected, which leads to a dysfunction of the immune defense.  相似文献   

15.
Li Z  Hannigan M  Mo Z  Liu B  Lu W  Wu Y  Smrcka AV  Wu G  Li L  Liu M  Huang CK  Wu D 《Cell》2003,114(2):215-227
Efficient chemotaxis requires directional sensing and cell polarization. We describe a signaling mechanism involving G beta gamma, PAK-associated guanine nucleotide exchange factor (PIX alpha), Cdc42, and p21-activated kinase (PAK) 1. This pathway is utilized by chemoattractants to regulate directional sensing and directional migration of myeloid cells. Our results suggest that G beta gamma binds PAK1 and, via PAK-associated PIX alpha, activates Cdc42, which in turn activates PAK1. Thus, in this pathway, PAK1 is not only an effector for Cdc42, but it also functions as a scaffold protein required for Cdc42 activation. This G beta gamma-PAK1/PIX alpha/Cdc42 pathway is essential for the localization of F-actin formation to the leading edge, the exclusion of PTEN from the leading edge, directional sensing, and the persistent directional migration of chemotactic leukocytes. Although ligand-induced production of PIP(3) is not required for activation of this pathway, PIP(3) appears to localize the activation of Cdc42 by the pathway.  相似文献   

16.
The directional movement of cells in a gradient of external stimulus is termed chemotaxis and is important in many aspects of development and differentiated cell function. Phophoinositide 3-kinases (PI(3)Ks) are thought to have critical roles within the gradient-sensing machinery of a variety of highly motile cells, such as mammalian phagocytes, allowing these cells to respond quickly and efficiently to shallow gradients of soluble stimuli. Our analysis of mammalian neutrophil migration towards ligands such as fMLP shows that, although PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) accumulate in a PI(3)Kgamma-dependent fashion at the up-gradient leading-edge, this signal is not required for efficient gradient-sensing and gradient-biased movement. PI(3)Kgamma activity is however, a critical determinant of the proportion of cells that can move, that is, respond chemokinetically, in reaction to fMLP. Furthermore, this dependence of chemokinesis on PI(3)Kgamma activity is context dependent, both with respect to the state of priming of the neutrophils and the type of surface on which they are migrating. We propose this effect of PI(3)Kgamma is through roles in the regulation of some aspects of neutrophil polarization that are relevant to movement, such as integrin-based adhesion and the accumulation of polymerized (F)-actin at the leading-edge.  相似文献   

17.
Phospholipase cbeta is critical for T cell chemotaxis   总被引:1,自引:0,他引:1  
Chemokines acting through G protein-coupled receptors play an essential role in the immune response. PI3K and phospholipase C (PLC) are distinct signaling molecules that have been proposed in the regulation of chemokine-mediated cell migration. Studies with knockout mice have demonstrated a critical role for PI3K in G(alphai) protein-coupled receptor-mediated neutrophil and lymphocyte chemotaxis. Although PLCbeta is not essential for the chemotactic response of neutrophils, its role in lymphocyte migration has not been clearly defined. We compared the chemotactic response of peripheral T cells derived from wild-type mice with mice containing loss-of-function mutations in both of the two predominant lymphocyte PLCbeta isoforms (PLCbeta2 and PLCbeta3), and demonstrate that loss of PLCbeta2 and PLCbeta3 significantly impaired T cell migration. Because second messengers generated by PLCbeta lead to a rise in intracellular calcium and activation of PKC, we analyzed which of these responses was critical for the PLCbeta-mediated chemotaxis. Intracellular calcium chelation decreased the chemotactic response of wild-type lymphocytes, but pharmacologic inhibition of several PKC isoforms had no effect. Furthermore, calcium efflux induced by stromal cell-derived factor-1alpha was undetectable in PLCbeta2beta3-null lymphocytes, suggesting that the migration defect is due to the impaired ability to increase intracellular calcium. This study demonstrates that, in contrast to neutrophils, phospholipid second messengers generated by PLCbeta play a critical role in T lymphocyte chemotaxis.  相似文献   

18.
Niggli V 《FEBS letters》2000,473(2):217-221
Activity of phosphatidylinositol (PI) 3-kinase is required for optimal migration of human neutrophils [Niggli and Keller (1999) Eur. J. Pharmacol. 335, 43-52]. We have tested the direct effect of a product of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), on neutrophil migration. To this end, a membrane-permeant ester of PIP(3), dilauroyl phosphatidylinositol 3,4, 5-trisphosphate-heptakis-(acetooxymethyl)ester (PIP(3)/AM) was used. PIP(3)/AM (ED(50): 10-17 microM) induced development of polarity and accumulation of F-actin in the leading lamellae in up to 70% of the cells. These cells exhibited stimulated random migration, comparable to that observed in uniform concentrations of chemotactic peptide. Evidence is provided for a role of Rho-kinase and for activation of PI 3-kinase in a positive feedback loop in PIP(3)/AM-induced motility.  相似文献   

19.
The entry of neutrophils into tissue has been well characterised; however the fate of these cells once inside the tissue microenvironment is not fully understood. A variety of signal transduction pathways including those involving class I PI3 Kinases have been suggested to be involved in neutrophil migration. This study aims to determine the involvement of PI3 Kinases in chemokinetic and chemotactic neutrophil migration in response to CXCL8 and GM-CSF in a three-dimensional collagen gel, as a model of tissue. Using a three-dimensional collagen assay chemokinetic and chemotactic migration induced by CXCL8 was inhibited with the pan PI3 Kinase inhibitor wortmannin. Analysis of the specific Class I PI3 Kinase catalytic isoforms alpha, delta and gamma using the inhibitors PIK-75, PIK-294 and AS-605240 respectively indicated differential roles in CXCL8-induced neutrophil migration. PIK-294 inhibited both chemokinetic and chemotactic CXCL8-induced migration. AS-605240 markedly reduced CXCL8 induced chemokinetic migration but had no effect on CXCL8 induced chemotactic migration. In contrast PIK-75 inhibited chemotactic migration but not chemokinetic migration. At optimal concentrations of GM-CSF the inhibitors had no effect on the percentage of neutrophil migration in comparison to the control however at suboptimal concentrations wortmannin, AS-605240 and PIK-294 inhibited chemokinesis. This study suggests that PI3 Kinase is necessary for CXCL8 induced migration in a 3D tissue environment but that chemokinetic and chemotactic migration may be controlled by different isoforms with gamma shown to be important in chemokinesis and alpha important in chemotaxis. Neutrophil migration in response to suboptimal concentrations of GM-CSF is dependent on PI3 Kinase, particularly the gamma and delta catalytic isoforms.  相似文献   

20.
Directed cell migration in response to chemical cues, also known as chemotaxis, is an important physiological process involved in wound healing, foraging, and the immune response. Cell migration requires the simultaneous formation of actin polymers at the leading edge and actomyosin complexes at the sides and back of the cell. An unresolved question in eukaryotic chemotaxis is how the same chemoattractant signal determines both the cell's front and back. Recent experimental studies have begun to reveal the biochemical mechanisms necessary for this polarized cellular response. We propose a mathematical model of neutrophil gradient sensing and polarization based on experimentally characterized biochemical mechanisms. The model demonstrates that the known dynamics for Rho GTPase and phosphatidylinositol-3-kinase (PI3K) activation are sufficient for both gradient sensing and polarization. In particular, the model demonstrates that these mechanisms can correctly localize the “front” and “rear” pathways in response to both uniform concentrations and gradients of chemical attractants, including in actin-inhibited cells. Furthermore, the model predictions are robust to the values of many parameters. A key result of the model is the proposed coincidence circuit involving PI3K and Ras that obviates the need for the “global inhibitors” proposed, though never experimentally verified, in many previous mathematical models of eukaryotic chemotaxis. Finally, experiments are proposed to (in)validate this model and further our understanding of neutrophil chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号