首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that some neuropeptides had a profound effect on in vitro Ig synthesis (especially IgA) and mitogen-driven murine lymphocyte proliferation. MOPC-315, an IgA-secreting plasmacytoma line, has been extensively used in studies of the regulation of IgA synthesis. In this report we show that the neuropeptide somatostatin (SOM) inhibits proliferation ([3H]thymidine uptake) of MOPC-315 and also inhibits IgA synthesis in vitro. MOPC-315 cells bind both fluorescent SOM and [125I]SOM specifically. On cytofluorimetric analysis, 68 +/- 6.8% (mean +/- SE, n = 7) of MOPC 315 cells labeled with fluorescent SOM and this staining was compatible by incubation with an excess of unlabeled peptide. Specific [125I]SOM binding increased linearly with cell concentration, was rapid and achieved equilibrium after 20 min at 4 degrees C. It was temperature-dependent, readily reversible, and under equilibrium conditions demonstrated a dissociation constant of 1.6 +/- 0.7 nM (mean +/- SE, n = 5). Scatchard analysis showed that MOPC-315 cells had 40,733 +/- 16,050 (mean +/- SE) binding sites for SOM per cell. The characteristics of the interactions of SOM with MOPC-315 cells suggest a specific receptor-mediated mechanism whereby this neuropeptide may modulate lymphocyte function.  相似文献   

2.
We have characterized the binding of multilamellar colloids to J774 cells. Cationic colloids were shown to bind much more efficiently than neutral ones. Particle uptake by cells was followed by flow cytometry and fluorescence microscopy. Analysis of the kinetics of uptake of cationic particles indicated that binding on the cell surface occurred with two characteristic times. Analysis of the dissociation properties allowed discriminating between several alternative models for adsorption and led us to propose a mechanism that involved two independent classes of binding sites on the cell surface. One class of sites appeared to be governed by a classic mass action law describing a binding equilibrium. The other sites were populated irreversibly by particles made of 10% cationic lipids. This was observed in the absence of endocytosis, under conditions where both the equilibrium and the irreversible binding occurred at the cell surface. We determined the rate constants for the different steps. We found that the reversible association occurred with a characteristic time of the order of tens of seconds, whereas the irreversible binding took a hundred times longer. The presence of serum proteins in the incubation medium did not drastically affect the final uptake of the particles. In contrast, the capture of the particles by cells significantly dropped when the fraction of positively charged lipids contained in the colloids was decreased from 10% to 5%. Finally, the results will be discussed within a comprehensive model where cationic particles find labile binding sites in the volume of the pericellular network (glycocalyx and extracellular matrix) and less-accessible irreversible binding sites at the cell membrane itself.  相似文献   

3.
A single species of human interferon alpha (IFN alpha) was labelled with 125I to high incorporation for binding studies on the B-lymphoblastoid cell line, Daudi, whose growth is inhibited by low doses of IFN, the effect being saturated at about 100 U/ml (25 pM). The radiolabelled IFN was shown to be fully active and the binding affinity to cellular sites was shown to be unchanged by iodination. Experimental conditions were standardized such that binding and cell growth experiments could be performed on the same initial culture of cells. 125I-labelled IFN alpha 2 (IFN alpha prepared from Escherichia coli carrying human alpha 2 gene) was added to exponentially growing cultures (mean specific growth rate 0.77 +/- 0.07 days-1) at a mean concentration of 235000 +/- 20000 cells ml-1. Two types of binding could be discerned on growing cultures: the first with a transient peak followed by a loss or discharge of available sites, the second reaching equilibrium some 3 h after the addition of IFN. Large differences in the apparent dissociation constants were evident. The affinity of binding at the 'steady-state', appeared to be much higher. An analysis of the displacement rates for bound IFN suggested that the two reactions were occurring consecutively over the whole of the dose range studied (1-100 U/ml; 0.25-25 pM IFN). In this dose range we found that Daudi cells would eventually stop growing at all doses and that the rates of deceleration of cellular growth were linearly proportional to the dose of IFN in a double-reciprocal plot (i.e. in analogy to Michaelis-Menten kinetics). A good congruence was found between the equilibrium constants for binding and for growth inhibition (2.65 pM and 2.39 pM, respectively). The amount of IFN bound at steady state thus determines the rate at which growth is inhibited. We propose that the first reaction represents binding of IFN to surface receptors, and the second transfer of IFN to an activation complex on the cell membrane. Appropriate models and their general applicability to IFN action are discussed.  相似文献   

4.
Tetrahymena pyriformis GL cells pretreated (imprinted) and not pretreated with insulin showed dissimilar quantitative relations of FITC-insulin binding. Displacement of FITC-insulin by unlabelled insulin was considerably less in the control than in the imprinted series. The curve for saturation of the binding sites with FITC-insulin resembled a true saturation curve. The imprinted cells bound considerably more hormone in a shorter time than the control cells at identical levels of exposure. The dissociation of bound hormone from the imprinted cells increased over the control at 23 degrees C, and to a still greater degree at 4 degrees C. The effect of the pH of the medium on the dissociation of bound FITC-insulin also differed between the imprinted and not imprinted cells. Thus the proposed cytofluorimetric assay of binding kinetics demonstrated the actual conditions of receptor activity, and indicated that the induced insulin binding sites of Tetrahymena behaved similarly to 'classical' receptors.  相似文献   

5.
Foot-and-mouth disease virus structural protein VP1 elicits neutralizing and protective antibody and is probably the viral attachment protein which interacts with cellular receptor sites on cultured cells. To study the relationships between epitopes on the molecule related to neutralization and cell attachment, we tested monoclonal antibodies prepared against type A12 virus, isolated A12 VP1, and a CNBr-generated A12 VP1 fragment for neutralization and effect on viral absorption. The antibodies selected for analysis neutralized viral infectivity with varying efficiencies. One group of antibodies caused a high degree of viral aggregation and inhibited the adsorption of virus to cells by 50 to 70%. A second group of antibodies caused little or no viral aggregation but inhibited the adsorption of virus to cells by 80 to 90%. One antibody, which is specific for the intact virion, caused little viral aggregation and had no effect on the binding of virus to specific cellular receptor sites. Thus, at least three antigenic areas on the surface of foot-and-mouth disease virus which were involved in neutralization were demonstrated. One of the antigenic sites appears to have been responsible for interaction with the cellular receptor sites on the surface of susceptible cells.  相似文献   

6.
7.
Different genetic stains of avian RNA tumor virus (ATV) were labeled with the fluorescent membrane probe R-18 (rhodamine conjugated to a hydrocarbon chain) and cellular receptors for virus infection were analyzed on a rapid, single-cell basis by a multiparameter cell sorter. Chicken cells genetically susceptible to various R-18 ATV were found to adsorb much more virus, as measured by increased fluorescent binding, than did genetically resistant chicken cells. Virus binding to receptor sites could be saturated with increased concentrations of labeled virus. This binding could be altered by removal of the polycation, polybrene, indicating the important influence of electrostatic forces. Correlated time measurements of virus binding to single cells were taken with these fluorescence measurements allowing for a minute-to-minute study of the kinetics of viral adsorption to resistant and susceptible cells. The ratio of fluorescence (proportional to the number of virions bound per cell) to light scatter (proportional to cell surface area) on a cell-to-cell basis was analyzed to examine the heterogeneity in fluorescent virion bound per unit cell surface area within a given cell type. With these calculations, it was found that a large amount, but not all, of observed fluorescence heterogeneity merely reflects differences in cell surface areas. However, there are significant differences in viral receptor site densities within this supposedly homogeneous population of cells. This study represents a successful application of fluorescent membrane probes and flow cytometry to the study of cellular responses to viral infection at the single-cell level. Sine large numbers of cells can be examined rapidly, small subpopulations of live virally susceptible or resistant cells can be cloned by multiparameter cell sorting.  相似文献   

8.
Adsorption of 125I-labeled polyoma virions and capsids to the surface of mouse kidney cells (MKC) and guinea pig erythrocytes was examined. Purified polyoma capsids lack the ability to compete with polyoma virions for specific binding sites on the surface of MKC. These same capsids were, however, able to block virion adsorption to guinea pig erythrocytes. UV-inactivated virions blocked cellular receptors on MKC and thus inhibited infectious virions from infecting the cells. Capsids were unable to inhibit virion infection of MKC. Adsorption of polyoma virions to MKC and infection of these cells were found to be independent of the ability of the virions to agglutinate guinea pig erythrocytes.  相似文献   

9.
Cultured human urinary bladder carcinoma cells ( JTC -32) were used to investigate the regulation of insulin receptors by dexamethasone. When the cells were preincubated with dexamethasone at 37 degrees C, insulin binding sites increased up to 24 h. A large increase in insulin binding sites took place for 14 h of preincubation with dexamethasone. At lower concentrations of dexamethasone (less than 1 nM), no significant increase in insulin binding sites was observed, but the maximal increase was observed at more than 10 nM. Scatchard plots showed that dexamethasone increased the number of high affinity insulin binding sites (2.8 fold) without any change in the apparent equilibrium constant in JTC -32 cells. In addition, this steroid hormone also increased the number of low affinity insulin binding sites (1.6 fold) with a small change in the apparent equilibrium constant. Although insulin and dexamethasone did not affect the number of cells or the amount of cellular proteins per dish, dexamethasone plus insulin slightly increased them.  相似文献   

10.
The interaction of liposomes with BW 5147 murine thymocytic leukemia cells was studied using fluorescent probes (entrapped carboxyfluorescein and fluorescent phosphatidylethanolamine) in conjunction with a Ficoll-Paque discontinous gradient system for rapid separation of liposomes from cells. Reversible liposomal binding to discrete sites on the BW cell surface was found to represent the major form of interaction; uptake of intact liposomal contents by a process such as liposome-BW cell membrane fusion was found to apparently represent a minor pathway of interaction (2%). Liposomal lysis was found to be associated with the process of liposomal binding (perhaps as a result of the binding itself). Lysis was followed by release of the entrapped carboxyfluorescein into the media and its subsequent uptake by the cells. This lysis was shown to be dependent upon discrete membrane-associated sites that have some of the properties of proteins. The results of these studies suggest that liposomal binding to the cells, subsequent lysis of the liposomes and cellular uptake of their contents should be seriously considered in all studies of liposome-cell interactions as an alternate mode of interaction to the four modes (fusion, endocytosis, adsorption and lipid exchange) previously emphasized in the literature.  相似文献   

11.
Studies carried out using engineered proteins clearly demonstrate that adsorption to derivatized surfaces involves multiple interactions between functional groups on the protein and complementary sites distributed on the surface. The fact that adsorption involves multipoint interactions has important implications for the design of separations processes and for the interpretation of heterogeneity in biological recognition phenomena. Increasing the density of surface metal sites (immobilized copper ions) is found to be functionally equivalent to increasing the number of metal-coordinating groups on the protein (histidines and deporotonated amines), m in that both processes increase the likelihood of simultaneous interactions between the protein and the surface. A consequence of multiple-site interactions is a significant in crease in protein binding affinity that depends on the arrangement of surface sites. A protein will show the highest affinity for arrangements of surface sites which best match its own pattern of functioal groups and will show lower affinity for less optimal arrangements, resulting in binding that is inherently heterogeneous. We have found that reversible protein adsorption in immobilized metal affinity chromatography (IMAC) is described by the Temikin model, which characterizes binding heterogeneity by a uniform distribution of binding energies over the population of surface binding sites. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
13.
Nucleoside transport in various types of animal cells is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to a set of high-affinity sites on the plasma membrane. This work examined the binding of [3H]NBMPR to the nucleoside transporters of cultured Nil 8 hamster fibroblasts and of cells of a virus-transformed clone (Nil SV) derived from Nil 8. Experiments conducted with intact Nil 8 and Nil SV cells and with membrane preparations indicated that the two lines differed significantly in the cellular content of binding sites and only slightly in the affinities of these sites for NBMPR. Nil 8 and Nil SV cells possessed (4.2-8.0) X 10(5) and (2.0-4.0) X 10(6) sites per cell respectively, whereas the dissociation constants of site-bound NBMPR obtained with intact cells and with membrane preparations were similar, ranging from 0.29 to 1.5 nM. Dilazep, a potent inhibitor of nucleoside transport that is structurally unrelated to NBMPR, appeared to compete with NBMPR for binding to the high-affinity sites when tested under equilibrium conditions with Ki values for inhibition of NBMPR binding to Nil 8 and Nil SV cells respectively of 15 +/- 4 and 32 +/- 4 nM. The dissociation of NBMPR from the binding site--NBMPR complex of Nil SV membrane preparations was a first-order decay process with a rate constant of 0.68 +/- 0.26 min-1. The rate of dissociation of NBMPR from the binding-site complex of membrane preparations and intact cells was decreased significantly in the presence of dilazep and increased in the presence of the permeant uridine. These results suggest that the apparent competitive-inhibition kinetics obtained for dilazep under equilibrium conditions should not be interpreted as binding of dilazep to the same site as NBMPR but rather as binding of the two inhibitors to closely associated sites on the nucleoside transporter. Similarly, uridine also appears to bind to a site separate from the NBMPR-binding site.  相似文献   

14.
The precise roles of various surface molecules in the attachment of Streptococcus pyogenes to host epithelia are currently unclear. A flow cytometry assay that facilitates the analysis of the kinetics of S. pyogenes adhesion to epithelial cells was developed. Dose- and time-dependent adhesion isotherms with both buccal epithelial cells (BECs) and Hep-2 cells as substrata were obtained. Although binding equilibrium is reached within 2 h on both cell types, saturation of binding sites on BECs is not achieved within a wide range of experimental conditions. This indicates a high degree of non-specific attachment to that cell type. Since no rinsing step is necessary when using flow cytometry to analyze adhesion, low-affinity associations were observable. This was confirmed by determining bacterial desorption rates early and late in the adsorption process. Binding irregularities were also easily detected since the cytometer records and displays data for up to 10,000 epithelial cells per time point. It is proposed to use this methodology to assign roles to particular surface molecules/characteristics during distinct phases of adhesion.  相似文献   

15.
《Process Biochemistry》2007,42(4):612-619
In this work, a new surface active site (SAS) adsorption equilibrium model was presented, which explicitly accounted for the H+ competitive adsorption with Ni2+ in adsorption equilibrium. Static adsorption experiments with Ni2+ as a model metal ion were carried out to determine the model parameters, those were, equilibrium constant for Ni2+ (Ka), for H+ (Ks), characteristic number of binding sites for Ni2+ (n), for H+ (a), and the non-imprinted factor (σ). It was found that those model parameters n and a were all constant, and that they all expressed that one active site bound two Ni2+ or two H+, while the non-imprinted factor, σ, was effected by Ni2+ concentration, H+ concentration in solution and imprinted Ni2+ concentration in the preparation. Simulated result was compared with experimental data of the adsorption for Ni2+. It was showed that this model could be well used to predict the adsorption equilibrium for Ni2+ on the surface imprinted adsorbent. And it was demonstrated that the efficacy of the active sites formalism could be used in describing adsorption behavior for Ni2+ on the surface imprinted adsorbent.  相似文献   

16.
The effect of ionic strength on the adsorption of aldolase to synthetic thin filaments derived from rabbit skeletal muscle has been investigated by partition equilibrium experiments, the results being interpreted in terms of the intrinsic association constant for the interaction of four sites on aldolase with two sites per filament repeat unit. At physiological ionic strength, values of 10,000 and 2000 m?1 were obtained for this equilibrium constant in the absence and presence, respectively, of calcium ions. Comparison of binding curves obtained with synthetic thin filaments and myofibrils indicated a lesser extent of enzyme adsorption to the myofibrillar system, a difference attributed to the covert nature of many of the potential binding sites on the filaments in the assembly of the myofibril. On the basis of the quantitative information on the effect of ionic strength on the adsorption of aldolase, a case is made for the probable occurrence of the enzyme-filament interaction as a physiologically significant phenomenon in skeletal muscle.  相似文献   

17.
A substrain of the human monocyte-like cell line U937, which is a cholesterol auxotroph, was used to study the effect of cellular cholesterol depletion on the expression of the type I Fc receptor for IgG (Fc gamma RI). Measurement of Fc gamma RI expression was performed by immunofluorescence and flow cytometry using the monoclonal antibody (mAb) 32.2, which is specific for an epitope on Fc gamma RI, and monomeric IgG2a, which binds to the ligand binding site of Fc gamma RI. Incubation of these cells for 24 h in growth medium containing delipidated fetal calf serum depletes cellular cholesterol without affecting growth or viability. While incubation of U937 cells with human interferon-gamma (IFN-gamma) increased Fc gamma RI expression, cholesterol depletion after cell growth in media containing delipidated serum and IFN-gamma resulted in reduced binding of both mAb 32.2 and IgG2a. A significant decrease in the number of cell surface binding sites, as measured by mean fluorescence intensity, was observed after cholesterol depletion. Supplementation of the delipidated serum medium with pure cholesterol in an ethanol/bovine serum albumin mixture, which replenished cellular cholesterol and supported growth, failed to restore antibody binding significantly. In contrast, low-density lipoprotein (LDL) which also delivered cholesterol to the cells restored binding both in terms of the number of the reactive cells and cell surface receptor density. High-density lipoprotein (HDL3), which does not deliver cholesterol to the cells, showed results similar to those obtained with pure cholesterol. This indicates that either LDL cholesterol is better utilized for membrane synthesis than pure cholesterol or that LDL provides another component, in addition to cholesterol, which is required for expression of Fc gamma RI, but not for growth. These studies indicate a role for LDL in regulating the expression of Fc gamma RI on the cell surface.  相似文献   

18.
The binding of penetratin, a peptide that has been found useful for cellular delivery of large hydrophilic molecules, to negatively charged vesicles was investigated. The surface charge density of the vesicles was varied by mixing zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylglycerol (DOPG) at various molar ratios. The extent of membrane association was quantified from tryptophan emission spectra recorded during titration of peptide solution with liposomes. A singular value decomposition of the spectral data demonstrated unambiguously that two species, assigned as peptide free in solution and membrane-bound peptide, respectively, account for the spectral data of the titration series. Binding isotherms were then constructed by least-squares projection of the titration spectra on reference spectra of free and membrane-bound peptide. A model based on the Gouy-Chapman theory in combination with a two-state surface partition equilibrium, separating the electrostatic and the hydrophobic contributions to the binding free energy, was found to be in excellent agreement with the experimental data. Using this model, a surface partition constant of approximately 80 M(-)(1) was obtained for the nonelectrostatic contribution to the binding of penetratin irrespective of the fraction of negatively charged lipids in the membrane, indicating that the hydrophobic interactions are independent of the surface charge density. In accordance with this, circular dichroism measurements showed that the secondary structure of membrane-associated penetratin is independent of the DOPC/DOPG ratio. Experiments using vesicles with entrapped carboxyfluorescein showed that penetratin does not form membrane pores. Studies of the cationic peptide penetratin are complicated by extensive adsorption to surfaces of quartz and plastics. By modification of the quartz cell walls with the cationic polymer poly(ethylenimine), the peptide adsorption was reduced to a tolerable level. The data analysis method used for construction of the binding isotherms eliminated errors emanating from the remaining peptide adsorption, which otherwise would prevent a proper quantification of the binding.  相似文献   

19.
Mono-, di-, and trisulfonic acids, including 4,4′-diacetamido stilbene-2,2′-disulfonic acid (DAS) and 2-(4′-amino phenyl)-6-methylbenzene thiazol-3′,7-disulfonic acid (APMB) produce a reversible inhibition of sulfate equilibrium exchange in human red cells. A study of the sidedness of the action of a number of these sulfonic acids in red cell ghosts revealed that some, like DAS, inhibit only at the outer membrane surface while others, like APMB, inhibit at either surface. This finding suggests that at least two different types of membrane sites are involved in the control of anion permeability. The nature of the anion permeability controlling sites in the outer cell surface was investigated by studying the effects of DAS on the inhibition by dinitrofluoro-benzene (DNFB) of anion equilibrium exchange and on the binding of DNFB to the proteins of the red blood cell membrane. After exposure to DNFB in the presence of DAS for a certain period of time, there was a reduction of both the inhibitory effect of DNFB on sulfate exchange and the binding of DNFB to the protein in band 3 of SDS polyacrylamide gel electropherograms (nomenclature of Steck, J. Cell. Biol., 62: 1, 1974). Since binding to other membrane proteins was not affected, this observation supports the assumption that the protein in band 3 plays some role in anion transport. In accordance with the absence of an inhibitory effect at the inner membrane surface, internal DAS does not affect DNFB binding to the protein in band 3. DAS protected the anion exchange system not only against inhibition by DNFB but also by m-isothiocyanato benzene sulfonic acid. In contrast to DAS, the equally inhibitory phlorizin does not reduce the rate of dinitrophenylation of the protein in band 3. This suggests that either not all inhibitors of anion exchange exert their action by a combination with sites on the protein in band 3 or that in spite of the described evidence this protein is not involved in the control of anion movements. The effect of the irreversibly binding inhibitor 4-acetamido-4′-isothiocyanato-stilbene-2,2′-disulfonic acid (SITS) on DNFB binding to the protein in band 3 was studied in an attempt to differentiate DNFB binding related to inhibition of anion permeability from DNFB binding which is not involved. At least three distinguishable populations of DNFB binding sites were found: (1) binding sites common for DNFB and SITS which are probably related to inhibition, (2) other common sites which are not related to inhibition and (3) different sites whose dinitrophenylation is not affected by SITS. The number of sites in population (1) was estimated to be 0.8–1.2 ± 106/cell. A study of the concentration dependence of the inhibition of anion equilibrium exchange with 4,4′-isothiocyanato-2,2′-stilbene disulfonic acid (DIDS) and APMB further suggests that among the sites in population (1) a major fraction is susceptible to modification by APMB and DIDS while the rest is only susceptible to DIDS. It remains undecided whether these differences of susceptibility reflect differences of accessibility or reactivity.  相似文献   

20.
Receptor-mediated uptake and internalization of transthyretin   总被引:2,自引:0,他引:2  
Evidence of cellular transthyretin (TTR) binding was sought because of the observation that transthyretin can increase the uptake of its hormonal ligand. Transthyretin was bound by human hepatoma (Hep G2) cells in a time- and temperature-dependent manner, reaching equilibrium within 2 h. Scatchard analysis was consistent with a single class of high affinity binding sites with a Kd of approximately 5 nM at 0 and 4 degrees C and 14 nM at 37 degrees C. These dissociation constants are more than 2 orders of magnitude lower than the concentration of transthyretin in human serum. The apparent capacity at 0 degrees C, corrected for internalized TTR, was approximately 20,000 sites/cell. Saturable, high affinity binding of human transthyretin was also demonstrable with rat primary hepatocytes and human renal adenocarcinoma, neuroblastoma, and transformed lung cells. Rat and human transthyretin were equipotent in displacing isotopically labeled, species-specific transthyretin from human hepatoma cells and rat primary hepatocytes, a finding that is consistent with the strong homology between rat and human transthyretin. Eighty-eight percent of the saturable uptake was internalized as determined by proteolytic removal of surface transthyretin. Internalization was dependent on receptor binding and was more markedly inhibited than surface binding at 0 degrees C. Concentrations of thyroxine within a range that saturated a significant proportion of the primary and secondary TTR iodothyronine binding sites increased the uptake and internalization of transthyretin in a dose-dependent manner. By analogy to the function of receptors for other transport proteins, the interaction between transthyretin and its receptor is likely to affect ligand delivery and may have additional metabolic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号