共查询到3条相似文献,搜索用时 0 毫秒
1.
Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts with the oscillations of the unforced system, and both periodic and irregular (quasi-periodic or chaotic) solutions occur. In both cases the periodic solutions include one and multiple period cycles, and each cycle can have several reproduction pulses. 相似文献
2.
In epidemic models concerning a structured population, sojourn times in a group are usually described by an exponential distribution. For livestock populations, realistic distributions may be preferred for group changes (e.g. depending on sojourn time). We illustrated the effect on pathogen spread of the use of an exponential distribution, instead of the true distribution of the transition time, between groups for a population separated into two groups (youngstock, adults) when this true distribution is a triangular one. Concerning the epidemic process, two assumptions were defined: one type of excreting animal (SIR model), and two types of excreting animals (transiently or persistently infected animals). The study was conducted with two indirect-transmission levels between groups. Among the adults, the epidemic size and the last infection time were significantly different. For persistence, epidemic sizes (in the entire population and in youngstock) and first infection time, results varied according to models (excretion assumption, indirect-transmission level). 相似文献
3.
Sabin Lessard 《Journal of mathematical biology》2009,59(5):659-696
Diffusion approximations are ascertained from a two-time-scale argument in the case of a group-structured diploid population with scaled viability parameters depending on the individual genotype and the group type at a single multi-allelic locus under recurrent mutation, and applied to the case of random pairwise interactions within groups. The main step consists in proving global and uniform convergence of the distribution of the group types in an infinite population in the absence of selection and mutation, using a coalescent approach. An inclusive fitness formulation with coefficient of relatedness between a focal individual J affecting the reproductive success of an individual I, defined as the expected fraction of genes in I that are identical by descent to one or more genes in J in a neutral infinite population, given that J is allozygous or autozygous, yields the correct selection drift functions. These are analogous to the selection drift functions obtained with pure viability selection in a population with inbreeding. They give the changes of the allele frequencies in an infinite population without mutation that correspond to the replicator equation with fitness matrix expressed as a linear combination of a symmetric matrix for allozygous individuals and a rank-one matrix for autozygous individuals. In the case of no inbreeding, the mean inclusive fitness is a strict Lyapunov function with respect to this deterministic dynamics. Connections are made between dispersal with exact replacement (proportional dispersal), uniform dispersal, and local extinction and recolonization. The timing of dispersal (before or after selection, before or after mating) is shown to have an effect on group competition and the effective population size. In memory of Sam Karlin. 相似文献