首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of maintaining multilocus polymorphism by migration-selection balance is studied. A large population of diploid individuals is distributed over finitely many demes connected by migration. Generations are discrete and nonoverlapping, selection may vary across demes, and loci are multiallelic. It is shown that if migration and recombination are strong relative to selection, then with weak or no epistasis and intermediate dominance at every locus and in every deme, arbitrarily many alleles can be maintained at arbitrarily many loci at a stable equilibrium. If migration is weak relative to selection and recombination, then with weak or no epistasis and intermediate dominance at every locus and in every deme, as many alleles as there are demes can be maintained at arbitrarily many loci at equilibrium. In both cases open sets of such parameter combinations are constructed, thus the results are robust with respect to small, but arbitrary, perturbations in the parameters. For weak migration, the number of demes is, in fact, a generic upper bound to the number of alleles that can be maintained at any locus. Thus, several scenarios are identified under which multilocus polymorphism can be maintained by migration-selection balance when this is impossible in a panmictic population.   相似文献   

2.
The evolution of the gene frequencies at a single multiallelic locus under the joint action of migration and viability selection with dominance is investigated. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. Underdominance and overdominance are excluded. If the degree of dominance is deme independent for every pair of alleles, then under the Levene model, the qualitative evolution of the gene frequencies (i.e., the existence and stability of the equilibria) is the same as without dominance. In particular: (i) the number of demes is a generic upper bound on the number of alleles present at equilibrium; (ii) there exists exactly one stable equilibrium, and it is globally attracting; and (iii) if there exists an internal equilibrium, it is globally asymptotically stable. Analytic examples demonstrate that if either the Levene model does not apply or the degree of dominance is deme dependent, then the above results can fail. A complete global analysis of weak migration and weak selection on a recessive allele in two demes is presented.  相似文献   

3.
The dynamics and equilibrium structure of a deterministic population-genetic model of migration and selection acting on multiple multiallelic loci is studied. A large population of diploid individuals is distributed over finitely many demes connected by migration. Generations are discrete and nonoverlapping, migration is irreducible and aperiodic, all pairwise recombination rates are positive, and selection may vary across demes. It is proved that, in the absence of selection, all trajectories converge at a geometric rate to a manifold on which global linkage equilibrium holds and allele frequencies are identical across demes. Various limiting cases are derived in which one or more of the three evolutionary forces, selection, migration, and recombination, are weak relative to the others. Two are particularly interesting. If migration and recombination are strong relative to selection, the dynamics can be conceived as a perturbation of the so-called weak-selection limit, a simple dynamical system for suitably averaged allele frequencies. Under nondegeneracy assumptions on this weak-selection limit which are generic, every equilibrium of the full dynamics is a perturbation of an equilibrium of the weak-selection limit and has the same stability properties. The number of equilibria is the same in both systems, equilibria in the full (perturbed) system are in quasi-linkage equilibrium, and differences among allele frequencies across demes are small. If migration is weak relative to recombination and epistasis is also weak, then every equilibrium is a perturbation of an equilibrium of the corresponding system without migration, has the same stability properties, and is in quasi-linkage equilibrium. In both cases, every trajectory converges to an equilibrium, thus no cycling or complicated dynamics can occur.   相似文献   

4.
For the Levene model with soft selection in two demes, the maintenance of polymorphism at two diallelic loci is studied. Selection is nonepistatic and dominance is intermediate. Thus, there is directional selection in every deme and at every locus. We assume that selection is in opposite directions in the two demes because otherwise no polymorphism is possible. If at one locus there is no dominance, then a complete analysis of the dynamical and equilibrium properties is performed. In particular, a simple necessary and sufficient condition for the existence of an internal equilibrium and sufficient conditions for global asymptotic stability are obtained. These results are extended to deme-independent degree of dominance at one locus. A perturbation analysis establishes structural stability within the full parameter space. In the absence of genotype-environment interaction, which requires deme-independent dominance at both loci, nongeneric equilibrium behavior occurs, and the introduction of arbitrarily small genotype-environment interaction changes the equilibrium structure and may destroy stable polymorphism. The volume of the parameter space for which a (stable) two-locus polymorphism is maintained is computed numerically. It is investigated how this volume depends on the strength of selection and on the dominance relations. If the favorable allele is (partially) dominant in its deme, more than 20% of all parameter combinations lead to a globally asymptotically stable, fully polymorphic equilibrium.  相似文献   

5.
We consider a population subdivided into two demes connected by migration in which selection acts in opposite direction. We explore the effects of recombination and migration on the maintenance of multilocus polymorphism, on local adaptation, and on differentiation by employing a deterministic model with genic selection on two linked diallelic loci (i.e., no dominance or epistasis). For the following cases, we characterize explicitly the possible equilibrium configurations: weak, strong, highly asymmetric, and super-symmetric migration, no or weak recombination, and independent or strongly recombining loci. For independent loci (linkage equilibrium) and for completely linked loci, we derive the possible bifurcation patterns as functions of the total migration rate, assuming all other parameters are fixed but arbitrary. For these and other cases, we determine analytically the maximum migration rate below which a stable fully polymorphic equilibrium exists. In this case, differentiation and local adaptation are maintained. Their degree is quantified by a new multilocus version of $F_\mathrm{ST}$ and by the migration load, respectively. In addition, we investigate the invasion conditions of locally beneficial mutants and show that linkage to a locus that is already in migration-selection balance facilitates invasion. Hence, loci of much smaller effect can invade than predicted by one-locus theory if linkage is sufficiently tight. We study how this minimum amount of linkage admitting invasion depends on the migration pattern. This suggests the emergence of clusters of locally beneficial mutations, which may form ‘genomic islands of divergence’. Finally, the influence of linkage and two-way migration on the effective migration rate at a linked neutral locus is explored. Numerical work complements our analytical results.  相似文献   

6.
The maintenance of genetic variation in a spatially heterogeneous environment has been one of the main research themes in theoretical population genetics. Despite considerable progress in understanding the consequences of spatially structured environments on genetic variation, many problems remain unsolved. One of them concerns the relationship between the number of demes, the degree of dominance, and the maximum number of alleles that can be maintained by selection in a subdivided population. In this work, we study the potential of maintaining genetic variation in a two-deme model with deme-independent degree of intermediate dominance, which includes absence of G×E interaction as a special case. We present a thorough numerical analysis of a two-deme three-allele model, which allows us to identify dominance and selection patterns that harbor the potential for stable triallelic equilibria. The information gained by this approach is then used to construct an example in which existence and asymptotic stability of a fully polymorphic equilibrium can be proved analytically. Noteworthy, in this example the parameter range in which three alleles can coexist is maximized for intermediate migration rates. Our results can be interpreted in a specialist-generalist context and (among others) show when two specialists can coexist with a generalist in two demes if the degree of dominance is deme independent and intermediate. The dominance relation between the generalist allele and the specialist alleles play a decisive role. We also discuss linear selection on a quantitative trait and show that G×E interaction is not necessary for the maintenance of more than two alleles in two demes.  相似文献   

7.
 The convergence of multilocus systems under viability selection with constant fitnesses is investigated. Generations are discrete and nonoverlapping; the monoecious population mates at random. The number of multiallelic loci, the linkage map, dominance, and epistasis are arbitrary. It is proved that if epistasis or selection is sufficiently weak (and satisfies a certain nondegeneracy assumption whose genericity we establish), then there is always convergence to some equilibrium point. In particular, cycling cannot occur. The behavior of the mean fitness and some other aspects of the dynamics are also analyzed. Received: 15 November 1997 / Revised version: 25 May 1998  相似文献   

8.
Alan Hastings 《Genetics》1986,112(1):157-171
Using perturbation techniques, I study the equilibrium of deterministic discrete time multilocus models with weak epistasis. The most important results are on the relationship between epistasis and disequilibrium. Disequilibrium involving a particular set of loci reflects only epistasis simultaneously involving those loci. Moreover, all the disequilibria of all orders vary approximately as the inverse of the probability of at least one recombination event among the loci involved. Finally, higher order disequilibria among loci will be lower than lower order ones, even if the level of epistasis is the same at all orders. In this sense, the unit of selection is small. However, given the larger number of higher order disequilibria, these higher order disequilibria may play an important role in the computation of gametic frequencies from allelic frequencies in models with a large number of loci. Finally, I show that epistasis between blocks of loci will be averages of epistatic effects, not additions of epistatic effects. Thus, failure to find significant epistasis on a chromosomal basis does not rule out the importance of epistatic effects.  相似文献   

9.
A diffusion approximation is obtained for the frequency of a selected allele in a population comprised of many subpopulations or demes. The form of the diffusion is equivalent to that for an unstructured population, except that it occurs on a longer time scale when migration among demes is restricted. This many-demes diffusion limit relies on the collection of demes always being in statistical equilibrium with respect to migration and drift for a given allele frequency in the total population. Selection is assumed to be weak, in inverse proportion to the number of demes, and the results hold for any deme sizes and migration rates greater than zero. The distribution of allele frequencies among demes is also described.  相似文献   

10.
The study of the mechanisms that maintain genetic variation has a long history in population genetics. We analyze a multilocus-multiallele model of frequency- and density-dependent selection in a large randomly mating population. The number of loci and the number of alleles per locus are arbitrary. The n loci are assumed to contribute additively to a quantitative character under stabilizing or directional selection as well as under frequency-dependent selection caused by intraspecific competition. We assume the strength of stabilizing selection to be weak, whereas the strength of frequency dependence may be arbitrary. Density-dependence is induced by population regulation. Our main result is a characterization of the equilibrium structure and its stability properties in terms of all parameters. It turns out that no equilibrium exists with more than two alleles segregating per locus. We give necessary and sufficient conditions on the strength of frequency dependence to ensure the maintenance of multilocus polymorphism. We also give explicit formulas on the number of polymorphic loci maintained at equilibrium. These results are based on the assumption that selection is sufficiently weak compared with recombination, so that linkage equilibrium can be assumed. If additionally the population size is assumed to be constant, we prove that the dynamics of the model form a generalized gradient system. For the model in its general form we are able to derive necessary and sufficient conditions for the stability of the monomorphic equilibria. Furthermore, we briefly analyze a special symmetric two-locus two-allele model for a constant population size but allowing for linkage disequilibrium. Finally, we analyze a single diallelic locus with dominance to illustrate the complications that can occur if the assumption of additivity is relaxed.  相似文献   

11.
Gene genealogies in a metapopulation   总被引:1,自引:0,他引:1  
Wakeley J  Aliacar N 《Genetics》2001,159(2):893-905
A simple genealogical process is found for samples from a metapopulation, which is a population that is subdivided into a large number of demes, each of which is subject to extinction and recolonization and receives migrants from other demes. As in the migration-only models studied previously, the genealogy of any sample includes two phases: a brief sample-size adjustment followed by a coalescent process that dominates the history. This result will hold for metapopulations that are composed of a large number of demes. It is robust to the details of population structure, as long as the number of possible source demes of migrants and colonists for each deme is large. Analytic predictions about levels of genetic variation are possible, and results for average numbers of pairwise differences within and between demes are given. Further analysis of the expected number of segregating sites in a sample from a single deme illustrates some previously known differences between migration and extinction/recolonization. The ancestral process is also amenable to computer simulation. Simulation results show that migration and extinction/recolonization have very different effects on the site-frequency distribution in a sample from a single deme. Migration can cause a U-shaped site-frequency distribution, which is qualitatively similar to the pattern reported recently for positive selection. Extinction and recolonization, in contrast, can produce a mode in the site-frequency distribution at intermediate frequencies, even in a sample from a single deme.  相似文献   

12.
We apply new analytical methods to understand the consequences of population bottlenecks for expected additive genetic variance. We analyze essentially all models for multilocus epistasis that have been numerically simulated to demonstrate increased additive variance. We conclude that for biologically plausible models, large increases in expected additive variance--attributable to epistasis rather than dominance--are unlikely. Naciri-Graven and Goudet (2003) found that as the number of epistatically interacting loci increases, additive variance tends to be inflated more after a bottleneck. We argue that this result reflects biologically unrealistic aspects of their models. Specifically, as the number of loci increases, higher-order epistatic interactions become increasingly important in these models, with an increasing fraction of the genetic variance becoming nonadditive, contrary to empirical observations. As shown by Barton and Turelli (2004), without dominance, conversion of nonadditive to additive variance depends only on the variance components and not on the number of loci per se. Numerical results indicating that more inbreeding is needed to produce maximal release of additive variance with more loci follow directly from our analytical results, which show that high levels of inbreeding (F > 0.5) are needed for significant conversion of higher-order components. We discuss alternative approaches to modeling multilocus epistasis and understanding its consequences.  相似文献   

13.
The effect of population bottlenecks on the components of the genetic covariance generated by two neutral independent epistatic loci has been studied theoretically (additive, covA; dominance, covD; additive-by-additive, covAA; additive-by-dominance, covAD; and dominance-by-dominance, covDD). The additive-by-additive model and a more general model covering all possible types of marginal gene action at the single-locus level (additive/dominance epistatic model) were considered. The covariance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium over replicates randomly derived from the base population, after t consecutive bottlenecks of equal size N (derived components). Formulae were obtained in terms of the allele frequencies and effects at each locus, the corresponding epistatic effects and the inbreeding coefficient Ft. These expressions show that the contribution of nonadditive loci to the derived additive covariance (covAt) does not linearly decrease with inbreeding, as in the pure additive case, and may initially increase or even change sign in specific situations. Numerical examples were also analyzed, restricted for simplicity to the case of all covariance components being positive. For additive-by-additive epistasis, the condition covAt > covA only holds for high frequencies of the allele decreasing the metric traits at each locus (negative allele) if epistasis is weak, or for intermediate allele frequencies if it is strong. For the additive/dominance epistatic model, however, covAt > covA applies for low frequencies of the negative alleles at one or both loci and mild epistasis, but this result can be progressively extended to intermediate frequencies as epistasis becomes stronger. Without epistasis the same qualitative results were found, indicating that marginal dominance induced by epistasis can be considered as the primary cause of an increase of the additive covariance after bottlenecks. For all models, the magnitude of the ratio covAt/covA was inversely related to N and t.  相似文献   

14.
Evolution at a multiallelic locus under the joint action of migration and viability selection is investigated. Generations are discrete and nonoverlapping. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. The forward migration matrix is arbitrary, but time independent and ergodic (i.e., irreducible and aperiodic). Several examples of globally attracting multiallelic equilibria are presented. Migration can cause global fixation even if, without migration, there is a globally attracting multiallelic equilibrium in every colony. Migration can also cause the global fixation of an allele that, without migration, is eliminated in every colony. Without dominance, generically, the number of alleles present at equilibrium cannot exceed the number of colonies. Some general properties and examples of the Levene model are studied in detail. If in each colony there is either no dominance or, without migration, a globally attracting internal equilibrium, then there exists a globally attracting equilibrium with migration. Therefore, if an internal equilibrium exists, it is the global attractor.  相似文献   

15.
Martin G  Otto SP  Lenormand T 《Genetics》2006,172(1):593-609
In finite populations, linkage disequilibria generated by the interaction of drift and directional selection (Hill-Robertson effect) can select for sex and recombination, even in the absence of epistasis. Previous models of this process predict very little advantage to recombination in large panmictic populations. In this article we demonstrate that substantial levels of linkage disequilibria can accumulate by drift in the presence of selection in populations of any size, provided that the population is subdivided. We quantify (i) the linkage disequilibrium produced by the interaction of drift and selection during the selective sweep of beneficial alleles at two loci in a subdivided population and (ii) the selection for recombination generated by these disequilibria. We show that, in a population subdivided into n demes of large size N, both the disequilibrium and the selection for recombination are equivalent to that expected in a single population of a size intermediate between the size of each deme (N) and the total size (nN), depending on the rate of migration among demes, m. We also show by simulations that, with small demes, the selection for recombination is stronger than both that expected in an unstructured population (m = 1 - 1/n) and that expected in a set of isolated demes (m = 0). Indeed, migration maintains polymorphisms that would otherwise be lost rapidly from small demes, while population structure maintains enough local stochasticity to generate linkage disequilibria. These effects are also strong enough to overcome the twofold cost of sex under strong selection when sex is initially rare. Overall, our results show that the stochastic theories of the evolution of sex apply to a much broader range of conditions than previously expected.  相似文献   

16.
In a metapopulation, the process of recurrent local extinction and recolonization gives rise to an age structure among demes. Recently established demes will tend to differ from older demes in terms of the levels of genetic diversity found within them and the way this diversity is distributed among demes in the same and different ages. The effects of population turnover on average levels of genetic diversity among demes in a metapopulation have been the focus of much attention, both for neutral and nonneutral loci, but much less is known about the distribution of nonneutral genetic diversity among demes of different ages. In this paper, we used computer simulations to study the distribution of genetic load, inbreeding depression and heterosis in an age‐structured metapopulation. We found that, for mildly deleterious mutations, within‐deme inbreeding depression increased, whereas heterosis and genetic load decreased with deme age following severe colonization bottlenecks. In contrast, recessive lethal alleles tended to be purged during colonization, with older populations showing higher genetic load and higher within‐deme inbreeding depression. Heterosis caused by recessive lethal alleles and resulting from gene flow among different demes tended to be greatest for young demes, because the mutations responsible tended to be purged in the first few generations after colonization, but its effects increased again as populations grow older as a result of immigration. Our results point to a need for estimates of genetic diversity, genetic load, within‐deme inbreeding depression and heterosis in demes of different age classes separately.  相似文献   

17.
T. Nagylaki 《Genetics》1994,136(1):361-381
A model for the evolution of the local averages of a quantitative character under migration, selection, and random genetic drift in a subdivided population is formulated and investigated. Generations are discrete and nonoverlapping; the monoecious, diploid population mates at random in each deme. All three evolutionary forces are weak, but the migration pattern and the local population numbers are otherwise arbitrary. The character is determined by purely additive gene action and a stochastically independent environment; its distribution is Gaussian with a constant variance; and it is under Gaussian stabilizing selection with the same parameters in every deme. Linkage disequilibrium is neglected. Most of the results concern the covariances of the local averages. For a finite number of demes, explicit formulas are derived for (i) the asymptotic rate and pattern of convergence to equilibrium, (ii) the variance of a suitably weighted average of the local averages, and (iii) the equilibrium covariances when selection and random drift are much weaker than migration. Essentially complete analyses of equilibrium and convergence are presented for random outbreeding and site homing, the Levene and island models, the circular habitat and the unbounded linear stepping-stone model in the diffusion approximation, and the exact unbounded stepping-stone model in one and two dimensions.  相似文献   

18.
Epistasis in monkeyflowers   总被引:1,自引:0,他引:1  
Kelly JK 《Genetics》2005,171(4):1917-1931
Epistasis contributes significantly to intrapopulation variation in floral morphology, development time, and male fitness components of Mimulus guttatus. This is demonstrated with a replicated line-cross experiment involving slightly over 7000 plants. The line-cross methodology is based on estimates for means. It thus has greater power than the variance partitioning approaches historically used to estimate epistasis within populations. The replication of the breeding design across many pairs of randomly extracted, inbred lines is necessary given the diversity of multilocus genotypes residing within an outbred deme. Male fitness is shown to exhibit synergistic epistasis, an accelerating decline in fitness with inbreeding. Synergism is a necessary, but not sufficient, condition for a mutational deterministic hypothesis for the evolutionary maintenance of sexual reproduction. Unlike male fitness measures, flower morphology and development time yield positive evidence of epistasis but not of synergism. The results for these traits suggest that epistatic effects are variable across genetic backgrounds or sets of interacting loci.  相似文献   

19.
A mathematical approach to interactions between genotypes and phenotypes in a multilocus multiallele population is developed. No a priori information on a fitness function is required. In particular, some structural definitions of epistasis and the position effect are given in terms of a decomposition of phenotypical structures. On this base a distance to the additive non-epistasis is introduced and an explicit formula for it is obtained. A class of phenotypical structures including multilocus dominance is described in terms of directed graphs. The evolutionary equations are adjusted to a fitness function compatible with a phenotypical structure. Some results on the finiteness of the equilibria set are presented.  相似文献   

20.
Pavlidis P  Metzler D  Stephan W 《Genetics》2012,192(1):225-239
We study the trajectory of an allele that affects a polygenic trait selected toward a phenotypic optimum. Furthermore, conditioning on this trajectory we analyze the effect of the selected mutation on linked neutral variation. We examine the well-characterized two-locus two-allele model but we also provide results for diallelic models with up to eight loci. First, when the optimum phenotype is that of the double heterozygote in a two-locus model, and there is no dominance or epistasis of effects on the trait, the trajectories of selected mutations rarely reach fixation; instead, a polymorphic equilibrium at both loci is approached. Whether a polymorphic equilibrium is reached (rather than fixation at both loci) depends on the intensity of selection and the relative distances to the optimum of the homozygotes at each locus. Furthermore, if both loci have similar effects on the trait, fixation of an allele at a given locus is less likely when it starts at low frequency and the other locus is polymorphic (with alleles at intermediate frequencies). Weaker selection increases the probability of fixation of the studied allele, as the polymorphic equilibrium is less stable in this case. When we do not require the double heterozygote to be at the optimum we find that the polymorphic equilibrium is more difficult to reach, and fixation becomes more likely. Second, increasing the number of loci decreases the probability of fixation, because adaptation to the optimum is possible by various combinations of alleles. Summaries of the genealogy (height, total length, and imbalance) and of sequence polymorphism (number of polymorphisms, frequency spectrum, and haplotype structure) next to a selected locus depend on the frequency that the selected mutation approaches at equilibrium. We conclude that multilocus response to selection may in some cases prevent selective sweeps from being completed, as described in previous studies, but that conditions causing this to happen strongly depend on the genetic architecture of the trait, and that fixation of selected mutations is likely in many instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号