首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Oxidized low density lipoprotein (LDL) has a major impact in the development of atherosclerosis. Risk for oxidative modification of LDL is usually determined indirectly by measuring the capability of LDL to resist radical insult. We compared three different methods quantifying the antioxidative capacity of LDL ex vivo in dyslipidemic patients with coronary heart disease. Plasma samples were obtained from two double-blinded cross-over trials. The duration of all interventions (placebo, lovastatin 60 mg/day, RRR-alpha-tocopherol 300 mg/day and lovastatin + RRR-alpha-tocopherol combined) was 6 weeks. The total radical capturing capacity of LDL (TRAP) in plasma was determined using 2,2-azo-bis(2,4-dimethyl-valeronitrile) (AMVN) -induced oxidation, and measuring the extinction time of chemiluminescence. TRAP was compared to the variables characterizing formation of conjugated dienes in copper-induced oxidation. Also the initial concentrations and consumption times of reduced alpha-tocopherol (alpha-TOH) and ubiquinol in AMVN-induced oxidation were determined. Repeatability of TRAP was comparable to that of the lag time in conjugated diene formation. Coefficient of variation within TRAP assay was 4.4% and between TRAP assays 5.9%. Tocopherol supplementation produced statistically significant changes in all antioxidant variables except those related to LDL ubiquinol. TRAP increased by 57%, the lag time in conjugated diene formation by 34% and consumption time of alpha-TOH by 88%. When data of all interventions were included in the analyses, TRAP correlated with the lag time (r = 0.75, p < 10(-6)), with LDL alpha-TOH (r = 0.50, p < 0.001) and with the consumption time of alpha-TOH (r = 0.58, p < 0.0001). In the baseline data, the associations between different antioxidant variables were weaker. TRAP correlated with the lag time (r = 0.55, p < 0.001) and alpha-TOH consumption time (r = 0.48, p < 0.05), and inversely with apolipoprotein Al (r = -0.51, p < 0.05). Lag time at the baseline did not correlate with ubiquinol or tocopherol parameters, or with any plasma lipid or lipoprotein levels analyzed. Lovastatin treatment did not significantly affect the antioxidant capacity of LDL. In conclusion, TRAP reflects slightly different properties of LDL compared to the lag time. Thus, LDL TRAP assay may complement the other methods used to quantify the antioxidant capacity of LDL. However, TRAP and the lag time react similarly to vitamin E supplementation.  相似文献   

3.
Protein-induced distortion is a dramatic but not universally observed feature of sequence-specific DNA interactions. This is illustrated by the crystal structures of restriction enzyme-DNA complexes: While some of these structures exhibit DNA distortion, others do not. Among the latter is Pvull endonuclease, a small enzyme that is also amenable to NMR spectroscopic studies. Here 31P NMR spectroscopy is applied to demonstrate the unique spectral response of DNA to sequence-specific protein interactions. The 31P NMR spectrum of a noncognate DNA exhibits only spectral broadening upon the addition of enzyme. However, when enzyme is added to target DNA, a number of 31P resonances shift dramatically. The magnitudes of the chemical shifts (2-3 ppm) are among the largest observed. Site-specific substitution with phosphoramidates and phosphorothioates are used analyze these effects. While such spectral features have been interpreted as indicative of DNA backbone distortions, FRET analysis indicates that this does not occur in PvuII-cognate DNA complexes in solution. The distinct 31P spectral signature observed for cognate DNA mirrors that observed for the enzyme, underscoring the unique features of cognate complex formation.  相似文献   

4.
5.
The 80th anniversary of vitamin E: beyond its antioxidant properties   总被引:6,自引:0,他引:6  
  相似文献   

6.
We have previously demonstrated that the Adenovirus 2 (Ad2) E4 promoter is activated by an E1A gene product through an inducible enhancer. We now show that several DNA-protein complexes can be identified by gel-shift assay; the formation of one of these complexes involves the two core sequences previously found critical to the promoter activity.  相似文献   

7.
Reactive oxygen species (ROS) are produced as a consequence of normal aerobic metabolism and are able to induce DNA oxidative damage. At the cellular level, the evaluation of the protective effect of antioxidants can be achieved by examining the integrity of the DNA nucleobases using electrochemical techniques. Herein, the use of an adenine-rich oligonucleotide (dA(21)) adsorbed on carbon paste electrodes for the assessment of the antioxidant capacity is proposed. The method was based on the partial damage of a DNA layer adsorbed on the electrode surface by OH radicals generated by Fenton reaction and the subsequent electrochemical oxidation of the intact adenine bases to generate an oxidation product that was able to catalyze the oxidation of NADH. The presence of antioxidant compounds scavenged hydroxyl radicals leaving more adenines unoxidized, and thus, increasing the electrocatalytic current of NADH measured by differential pulse voltammetry (DPV). Using ascorbic acid (AA) as a model antioxidant species, the detection of as low as 50 nM of AA in aqueous solution was possible. The protection efficiency was evaluated for several antioxidant compounds. The biosensor was applied to the determination of the total antioxidant capacity (TAC) in beverages.  相似文献   

8.
9.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. IL-11 has been shown to induce gp130-dependent signaling through the formation of a high affinity complex with the IL-11 receptor (IL-11R) and gp130. Site-directed mutagenesis studies have identified three distinct receptor binding sites of IL-11, which enable it to form this high affinity receptor complex. Here we present data from immunoprecipitation experiments, using differentially tagged forms of ligand and soluble receptor components, which show that multiple copies of IL-11, IL-11R, and gp130 are present in the receptor complex. Furthermore, it is demonstrated that sites II and III of IL-11 are independent gp130 binding epitopes and that both are essential for gp130 dimerization. We also show that a stable high affinity complex of IL-11, IL-11R, and gp130 can be resolved by nondenaturing polyacrylamide gel electrophoresis, and its composition verified by second dimension denaturing polyacrylamide gel electrophoresis. Results indicate that the three receptor binding sites of IL-11 and the Ig-like domain of gp130 are all essential for this stable receptor complex to be formed. We therefore propose that IL-11 forms a hexameric receptor complex composed of two molecules each of IL-11, IL-11R, and gp130.  相似文献   

10.
The helical regions of RNA are generally very stable, but the single-stranded and loop regions often exist as an ensemble of conformations in solution. The theophylline-binding RNA aptamer forms a very stable structure when bound to the bronchodilator theophylline, but the theophylline binding site is not stably formed in the absence of ligand. The kinetics for theophylline binding were measured here by stopped-flow fluorescence spectroscopy to probe the mechanism for theophylline binding in this RNA aptamer. The kinetic studies showed that formation of the RNA-theophylline complex is over 1000 times slower than a diffusion-controlled rate, and the high affinity of the RNA-theophylline complex arises primarily from a slow dissociation rate for the complex. A theophylline-independent rate was observed for formation of the theophylline-RNA complex at high theophylline concentration, indicating that a conformational change in the RNA is the rate-limiting step in complex formation under these conditions. The RNA-theophylline complex requires divalent metal ions, such as Mg2+, to form a high-affinity complex, and there is a greater than 10000-fold reduction in affinity for theophylline in the absence of Mg2+. This decrease in binding affinity in the absence of Mg2+ results primarily from an increased dissociation rate for the complex. The implications of an ensemble of conformations in the free state of this theophylline-binding RNA are discussed and compared with mechanisms for formation of protein-ligand complexes.  相似文献   

11.
A protein precipitation method for the determination of tannins has been developed. The protein in the tannin-protein complexes was measured using the ninhydrin assay of amino acids released by alkaline hydrolysis of the complex. Standard protein and the complex were hydrolyzed with 13.5 N NaOH at 120 degrees C for 20 min and the amino acids released were measured with ninhydrin. Tannins did not interfere in the determination of protein by ninhydrin assay. The bovine serum albumin (BSA) precipitated (y; mg) increased linearly with increase in tannic acid (x) from 0.2 to 0.9 mg (y = 2.598x - 0.258). The protein precipitation capacities (mg BSA precipitated/g dry wt) measured by the method for young and mature leaves of oaks were Quercus incana (young, 42.21; mature, 79.51), Q. ilex (young, 1.86; mature, 1.86), and Q. semecarpifolia (young, 733.54; mature, 304.32). The method can provide valuable information on the mechanisms of protein-tannin interactions and nutritional and physiological significances of tannins.  相似文献   

12.
13.
14.
A sensitive technique for inorganic phosphate determination was developed. It is based on the formation of an insoluble rhodamine B-phosphomolybdate complex. After it is washed with 1 HCl the precipitate is dissolved in acetone and rhodamine B is measured spectrophotometrically at 555 nm. In 1 HCl, the complex is composed of three molecules rhodamine B and one molecule phosphomolybdate. Due to the high molar absorbance of rhodamine B in acetone and to the threefold amplification of dye concentration compared to Pi concentration in the precipitated complex, a molar absorption coefficient of 330,000 ± 5000 −1 cm−1 (SD) is obtained. This allows the determination of quantities as low as 1.5 nmol Pi with good precision, while quantities as low as 0.5 nmol Pi are detectable. The effect of anions and buffers was studied. Some possible applications of the method are illustrated, as, e.g., enzyme activity measurement at very low substrate concentration and determination of small quantities of Pi and total phosphate in (biological) samples.  相似文献   

15.
A simple and sensitive spectrophotometric method was developed for the determination of carbinoxamine maleate in pharmaceutical formulations. The method is based on the formation of a ternary complex, extractable with chloroform, between copper(II), eosin, and carbinoxamine maleate. The absorption spectra of the ternary complexes shows, under optimum conditions, a maxima at 538 nm, with apparent molar absorptive 6.1690 x 10(4) mol(-1) cm(-1), Sandell's sensitives 6.75 x 10(-3) microg cm(-2), and linearity in the concentration range 0.75-10.0 microg ml(-1). The method can be achieved with high accuracy (recovery values, 100 +/- 2%) and precision (with standard deviation 0.029-0.155 and relative standard deviation 3.87-1.55%). The method was again successfully applied, with high accuracy and good precision, for the determination of carbinoxamine maleate in various pharmaceutical formulations (syrup, drops, and tablets).  相似文献   

16.
17.
18.
With increasing evidence showing the involvement of oxidative stress induced by free radicals in the development of various diseases, the role of radical-scavenging antioxidants has received much attention. Although many randomized controlled clinical trials do not support the beneficial effects of indiscriminate supplementation of antioxidants, more recent studies suggest that antioxidants such as vitamin E may be effective for prevention and treatment of some diseases when given to the right subjects at the right time. Many studies on the antioxidant capacity assessed by various available methods showed inconsistent results and the assessment of antioxidant capacity has been the subject of extensive studies and arguments. This study was performed to elucidate the basic chemistry required for the development of a reliable method for the assessment of antioxidant capacity for radical scavenging in vitro. In this study, the capacity of α-tocopherol and its related compounds, ascorbic acid, and uric acid for scavenging radicals was assessed from their effects on the rate of decay of hydrophilic and lipophilic probes with various reactivities toward free radicals induced by hydrophilic and lipophilic radicals in homogeneous solution and heterogeneous micelle systems. Fluorescein, pyranine, and pyrogallol red were used as hydrophilic probes, and BODIPY and N,N-diphenyl-p-phenylenediamine were used as lipophilic probes. We show that the rate and amount of radical scavenging by antioxidants, termed the antioxidant radical absorbance capacity, could be assessed by an appropriate combination of radical initiator and probe. This method was applied to the assessment of radical-scavenging capacity of human plasma, wine, and green tea powder.  相似文献   

19.
Single stage conventional analysis of neutral protease activity present in certain tumour cell cytoplasmic fractions has been demonstrated to be totally misleading due to hidden errors introduced by the complex interactions of the protease with a cytoplasmic inhibitor of this enzyme. A novel system has been developed which enables the rapid simultaneous quantitative analysis of neutral protease activity and inhibitor activity. This technique employs an insoluble fluorescein-labelled substrate (polymeric collagen fibrils) and relies on the sensitive fluorimetric assay of solubilised fluorescein-labelled peptides. This technique has been termed “incremental analysis” and the advantages of incremental analysis over conventional analysis methods have been described in detail. The experimentally obtained results can readily be resolved graphically or by simple computation.  相似文献   

20.
Developing a rational strategy to control intracellular reactive oxygen species (ROS) requires understanding the mechanism of antioxidant activity. In this investigation the properties of a novel synthetic analog of vitamin E (IRFI005) with potent antioxidant activity are described. A mechanism is proposed for its efficient radical-scavenging effects. Cellular antioxidant and antitoxicity assays showed IRFI005 to freely permeate across cellular membranes, enabling it to be an effective suppressor of intracellular ROS and to protect cells against toxicity induced by free radical generating compounds. The free radical-scavenging activity of IRFI005 examined by UV–Vis and electron spin resonance (ESR) techniques clearly confirmed a “two electrons and/or H-atom” donation mechanism for each molecule of IRFI005. Reducing power assay as well as semi-empirical calculations revealed that under physiological conditions (pH∼7) almost all IRFI005 molecules are in the anionic state (IRFI005). Data indicated that the electron donating ability of IRFI005 was dominant at physiological pH because of higher stability of quinine-IRFI005 and less barrier energy of IRFI005 than neutral IRFI005. Consequently, the efficient cellular protection of IRFI005 against toxic free radicals can be explained by a two electron-transfer process, because of reduced inter-frontier molecular orbital energy gap barrier at physiological pH. Our findings suggest that hydrophilic vitamin E-like antioxidants are good candidates in designing novel therapeutic strategies for inhibition of oxidative stress associated with different human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号