首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Retinoic acid, the active vitamin A derivative, has pleiotropic functions during vertebrate development and postnatal life. Retinaldehyde dehydrogenase 2 (RALDH2) acts as the main retinoic acid-synthesizing enzyme during development. Mouse Raldh2 germline null mutants are early embryonic lethal and exhibit complex abnormalities that include defective heart looping morphogenesis. To investigate later functions of this enzyme, we have engineered a "floxed" (loxP-flanked) allele allowing Cre-mediated somatic gene inactivations. Mice heterozygous or homozygous for the floxed Raldh2 allele are viable and fertile. We tested whether the novel Raldh2 allele behaves as a null mutation after Cre-mediated in vivo excision by crossing the conditional mutants with CMV-Cre transgenic mice. An embryonic lethal phenotype indistinguishable from that of germline mutants was obtained. The conditional allele described herein is a genetic tool for studying tissue-specific, RALDH2-dependent functions of retinoic acid during development and in adult life.  相似文献   

3.
4.
Central aspects of cellular iron metabolism are controlled by IRP1 and IRP2, which are ubiquitously expressed in mouse organs and cells. Total and constitutive deficiency of both IRPs causes embryonic lethality in the mouse. To bypass the early lethality and to study organ-specific and/or temporal functions of IRP1 and/or IRP2 we generated Irp1 and Irp2 conditional alleles. We used mouse lines where a betaGeo gene trap construct was inserted into the second intron of the Irp1 and the Irp2 gene, generating hypomorphic alleles by interrupting the corresponding open reading frame near the amino-termini. The gene trap cassettes are flanked by Frt sites and were co-inserted with LoxP sites flanking exon 3. Flp-mediated removal of the gene trap construct generates floxed alleles with wildtype functions. For both Irp genes, Cre-assisted deletion of exon 3 generates complete null alleles that, in the case of IRP2, are associated with altered body iron distribution and compromised hematopoiesis. If not removed, the gene trap construct causes partially penetrant embryonic lethality unrelated to IRP deficiency when inserted within the Irp1 but not the Irp2 locus. We discuss the implications for functional genomics in the mouse.  相似文献   

5.
6.
Regulator of telomere length (RTEL) is a DNA helicase-like protein that has recently been demonstrated to be required for the maintenance of telomere length and genomic stability. Rtel null mice are embryonic lethal with the defects in the nervous system, the heart, the vasculature, and extra-embryonic tissues. Rtel could also be important for the postnatal development as its expression is strongly induced in the proliferating adult cells. To further characterize the role of RTEL in adult tissue function and homeostasis, we have generated the floxed (loxP-flanked) alleles allowing to inactivate RTEL through Cre-mediated recombination in a cell- or tissue-specific manner and also to circumvent the embryonic lethality of the Rtel null allele. Mice heterozygous or homozygous for these alleles are viable and fertile. Crossing the floxed Rtel allele with a ubiquitous Cre transgenic line resulted in embryonic defects identical to those previously described for the Rtel null embryos. These conditional alleles will therefore be the important genetic tools for dissecting the spatial and temporal roles of RTEL in the regulation of telomere length and genomic stability during postnatal development and tumorigenesis.  相似文献   

7.
Protein phosphatase 2A (PP2A) is one of the most abundant serine/threonine phosphatases, with a critical role in embryonic development and human disease. There are two isoforms of the catalytic subunit of PP2A, Ppp2ca and Ppp2cb. Null mutation of Ppp2ca leads to early embryonic lethality at E6.5, hindering functional study of PP2A beyond this stage. We generated conditional null alleles of Ppp2ca and Ppp2cb by flanking with loxP sites exons 3 to 5 of Ppp2ca and exon 3 of Ppp2cb. Ppp2ca(fl/fl) mice did not display any visible phenotype. Homozygous mutants in which Cre-mediated excision resulted in global deletion of Ppp2ca displayed embryonic lethality and developmental defects similar to those previously reported. Ppp2cb(Δ/Δ) mice generated by the same strategy did not display any obvious morphological or physiological defects. These mouse strains can serve as important genetic tools to study the roles of PP2A during development and disease in a spatial- or temporal-specific manner.  相似文献   

8.
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. We previously described construction and analysis of a hypomorphic allele of the Notch2 gene. Homozygosity for this allele leads to embryonic and perinatal lethality due to cardiovascular and kidney defects. We report here novel Notch2 mutant alleles generated by gene targeting in embryonic stem cells, including a conditional null allele in which exon 3 of the Notch2 gene is flanked by loxP sequences. These new Notch2 mutant alleles expand the set of tools available for studying the myriad roles of the Notch pathway during mammalian development and will enable analysis of Notch2 function at additional stages of embryogenesis and in adult mice.  相似文献   

9.
PDGF-C is a newly identified member of the platelet-derived growth factor (PDGF) family, which is involved in multiple cellular functions by signaling through PDGF receptor (PDGFR)-alphaalpha and alphabeta dimers. PDGF-C deficiency is perinatal lethal due to the formation of cleft palate. To further characterize the cellular function of PDGF-C during both embryonic and postnatal development, we have generated two conditional alleles of the Pdgf-c gene in which two loxP sites flank exon 5. Global Cre-mediated excision of the floxed exon 5 in these alleles resulted in a complete loss of PDGF-C expression and caused embryonic defects identical to those previously described for the PDGF-C null embryos. These conditional alleles will therefore be the important genetic tools for dissecting the spatial and temporal roles of PDGF-C during development and in adult tissues. Furthermore, from this work, we have also described a simple approach for creating mouse conditional alleles in an efficient manner.  相似文献   

10.
11.
12.
13.
The BRG1 catalytic subunit of SWI/SNF-related complexes is required for mammalian development as exemplified by the early embryonic lethality of Brg1 null homozygous mice. BRG1 is also a tumor suppressor and, in mice, 10% of heterozygous (Brg1(null/+)) females develop mammary tumors. We now demonstrate that BRG1 mRNA and protein are expressed in both the luminal and basal cells of the mammary gland, raising the question of which lineage requires BRG1 to promote mammary homeostasis and prevent oncogenic transformation. To investigate this question, we utilized Wap-Cre to mutate both Brg1 floxed alleles in the luminal cells of the mammary epithelium of pregnant mice where WAP is exclusively expressed within the mammary gland. Interestingly, we found that Brg1(Wap-Cre) conditional homozygotes lactated normally and did not develop mammary tumors even when they were maintained on a Brm-deficient background. However, Brg1(Wap-Cre) mutants did develop ovarian cysts and uterine tumors. Analysis of these latter tissues showed that both, like the mammary gland, contain cells that normally express Brg1 and Wap. Thus, tumor formation in Brg1 mutant mice appears to be confined to particular cell types that require BRG1 and also express Wap. Our results now show that such cells exist both in the ovary and the uterus but not in either the luminal or the basal compartments of the mammary gland. Taken together, these findings indicate that SWI/SNF-related complexes are dispensable in the luminal cells of the mammary gland and therefore argue against the notion that SWI/SNF-related complexes are essential for cell survival. These findings also suggest that the tumor-suppressor activity of BRG1 is restricted to the basal cells of the mammary gland and demonstrate that this function extends to other female reproductive organs, consistent with recent observations of recurrent ARID1A/BAF250a mutations in human ovarian and endometrial tumors.  相似文献   

14.
15.
Hes genes are required to maintain diverse progenitor cell populations during embryonic development. Loss of Hes1 results in a spectrum of malformations of pharyngeal endoderm-derived organs, including the ultimobranchial body (progenitor of C cells), parathyroid, thymus and thyroid glands, together with highly penetrant C-cell aplasia (81%) and parathyroid aplasia (28%). The hypoplastic parathyroid and thymus are mostly located around the pharyngeal cavity, even at embryonic day (E) 15.5 to E18.5, indicating the failure of migration of the organs. To clarify the relationship between these phenotypes and neural crest cells, we examine fate mapping of neural crest cells colonized in pharyngeal arches in Hes1 null mutants by using the Wnt1-Cre/R26R reporter system. In null mutants, the number of neural crest cells labeled by X-gal staining is markedly decreased in the pharyngeal mesenchyme at E12.5 when the primordia of the thymus, parathyroid and ultimobranchial body migrate toward their destinations. Furthermore, phospho-Histone-H3-positive proliferating cells are reduced in number in the pharyngeal mesenchyme at this stage. Our data indicate that the development of pharyngeal organs and survival of neural-crest-derived mesenchyme in pharyngeal arches are critically dependent on Hes1. We propose that the defective survival of neural-crest-derived mesenchymal cells in pharyngeal arches directly or indirectly leads to deficiencies of pharyngeal organs.  相似文献   

16.
The yeast Candida albicans is the most important fungal pathogen of humans and a model organism for studying fungal virulence. Sequencing of the C. albicans genome will soon be completed, allowing systematic approaches to analyse gene function. However, techniques to define and characterize essential genes in this permanently diploid yeast are limited. We have developed an efficient method to create conditional lethal C. albicans null mutants by inducible, FLP-mediated gene deletion. Both wild-type alleles of the CDC42 or the BEM1 gene were deleted in strains that carried an additional copy of the respective gene that could be excised from the genome by the site-specific recombinase FLP. Expression of a C. albicans-adapted FLP gene under the control of an inducible promoter generated cell populations consisting of > or = 99.9% null mutants. Upon plating, these cells were unable to form colonies, demonstrating that CDC42 and BEM1 are essential genes in C. albicans. The cdc42 null mutants failed to produce buds and hyphae and grew as large, round cells instead, suggesting that they lacked the ability to produce polarized cell growth. However, the cells still responded to hyphal inducing signals by aggregating and expressing hypha-specific genes, behaviours typical of the mycelial growth form of C. albicans. Budding cells and germ tubes of bem1 null mutants exhibited morphological abnormalities, demonstrating that BEM1 is essential for normal growth of both yeast and hyphae. Inducible, FLP-mediated gene deletion provides a powerful approach to generate conditional lethal C. albicans mutants and allows the functional analysis of essential genes.  相似文献   

17.
Semaphorins are extracellular proteins that regulate axon guidance and morphogenesis by interacting with a variety of cell surface receptors. Most semaphorins interact with plexin-containing receptor complexes, although some interact with non-plexin receptors. Class 2 semaphorins are secreted molecules that control axon guidance and epidermal morphogenesis in Drosophila and Caenorhabditis elegans. We show that the C. elegans class 2 semaphorin MAB-20 binds the plexin PLX-2. plx-2 mutations enhance the phenotypes of hypomorphic mab-20 alleles but not those of mab-20 null alleles, indicating that plx-2 and mab-20 act in a common pathway. Both mab-20 and plx-2 mutations affect epidermal morphogenesis during embryonic and in postembryonic development. In both contexts, plx-2 null mutant phenotypes are much less severe than mab-20 null phenotypes, indicating that PLX-2 is not essential for MAB-20 signaling. Mutations in the ephrin efn-4 do not synergize with mab-20, indicating that EFN-4 may act in MAB-20 signaling. EFN-4 and PLX-2 are coexpressed in the late embryonic epidermis where they play redundant roles in MAB-20-dependent cell sorting.  相似文献   

18.
Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.  相似文献   

19.
20.
Dosage requirement of Pitx2 for development of multiple organs.   总被引:23,自引:0,他引:23  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号