首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Qian  M Capovilla    V Pirrotta 《The EMBO journal》1993,12(10):3865-3877
The core activity of the Ubx gene enhancer BRE (bx region enhancer) is encoded within a 500 bp module. bx DNA outside this active module increases the level of expression, expands the expression into ventro-lateral ectoderm and partially stabilizes the late expression pattern. The products of the gap genes hb and tll and of the pair-rule gene ftz bind to the 500 bp BRE module and control directly its initial pattern of expression. ftz enhances expression in even-numbered parasegments within the correct spatial domain whose boundaries are set by hb and tll. In addition, en and twi products activate the enhancer, probably directly. en broadens the parasegmental stripe while twi cooperates with ftz to enhance expression in the mesoderm. Binding sites for the five regulators are closely clustered, often overlapping extensively with one another. In vitro, hb blocks the binding of ftz and can also displace ftz protein pre-bound to an overlapping site, suggesting that competitive binding and/or interference by hb sets the initial boundaries of the domain of expression. Our results also suggest that this interaction is short-range and the long distance interactions among different enhancers may depend on each enhancer's ability to complex with the promoter.  相似文献   

2.
A purified Drosophila homeodomain protein represses transcription in vitro   总被引:23,自引:0,他引:23  
M D Biggin  R Tjian 《Cell》1989,58(3):433-440
  相似文献   

3.
S Qian  M Capovilla    V Pirrotta 《The EMBO journal》1991,10(6):1415-1425
The Drosophila homeotic gene Ultrabithorax (Ubx) is regulated by complex mechanisms that specify the spatial domain, the timing and the activity of the gene in individual tissues and in individual cells. In early embryonic development, Ubx expression is controlled by segmentation genes turned on earlier in the developmental hierarchy. Correct Ubx expression depends on multiple regulatory sequences located outside the basal promoter. Here we report that a 500 bp DNA fragment from the bx region of the Ubx unit, approximately 30 kb away from the promoter, contains one of the distant regulatory elements (bx region enhancer, BRE). During early embryogenesis, this enhancer element activates the Ubx promoter in parasegments (PS) 6, 8, 10, and 12 and represses it in the anterior half of the embryo. The repressor of the anterior Ubx expression is the gap gene hunchback (hb). We show that the hb protein binds to the BRE element and that such binding is essential for hb repression in vivo, hb protein also binds to DNA fragments from abx and bxd, two other regulatory regions of the Ubx gene. We conclude that hb represses Ubx expression directly by binding to BRE and probably other Ubx regulatory elements. In addition, the BRE pattern requires input from other segmentation genes, among them tailless and fushi tarazu but not Krüppel and knirps.  相似文献   

4.
5.
6.
The distributions of the products of the homeotic genes Sex combs reduced (Scr) and Ultrabithorax (Ubx) and of the segmentation genes, fushi tarazu (ftz), even skipped (eve) and engrailed (en) have been monitored in polyhomeotic (ph) mutant embryos. None of the genes monitored show abnormal expression at the blastoderm stage in the absence of zygotic ph expression. Both Scr and Ubx are ectopically expressed in the epidermis of ph embryos, confirming the earlier proposal, based on genetic analysis, that ph+ acts as a negative regulator of Antennapedia (ANT-C) and bithorax (BX-C) complex genes. At the shortened germ band stage, en is also ectopically expressed, mainly in the anterior region of each segment. In contrast to these effects in the epidermis, the expression of en, Ubx, Scr and ftz is largely or completely suppressed in the central nervous system, whereas eve becomes ectopically expressed in most neurones.  相似文献   

7.
8.
9.
10.
A gap gene, hunchback, regulates the spatial expression of Ultrabithorax   总被引:25,自引:0,他引:25  
R A White  R Lehmann 《Cell》1986,47(2):311-321
We have examined the distribution of Ultrabithorax (Ubx) proteins in embryos mutant for the zygotic gap class of segmentation genes. Members of this class include hunchback (hb), knirps (kni), and Krüppel (Kr). All three mutations disrupt segmentation in specific regions of the embryo. Mutations in kni and Kr produce complex alterations in the Ubx expression pattern. In hb mutants Ubx is ectopically expressed both anterior and posterior to its wild-type boundaries. Thus, the hb gene may play an important role in the specification of the boundaries of Ubx expression. Using the Ubx protein distribution as a marker for metameric organization and using Hoechst dye to monitor cell death, we could follow early events that lead to the final gap-segmentation phenotype in the larval cuticle.  相似文献   

11.
12.
13.
G Struhl  K Struhl  P M Macdonald 《Cell》1989,57(7):1259-1273
  相似文献   

14.
15.
In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes.  相似文献   

16.
Inappropriate expression of the Drosophila pair-rule gene, fushi tarazu (ftz), causes cuticular pattern deletions apparently complementary to those in ftz larvae. We show that the two patterns actually originate similarly, in both cases affecting the even-numbered parasegmental boundaries. The reciprocal cuticular patterns derive from differing patterns of selector gene expression (homoeotic transformations). The primary effect of ectopic ftz activity is to broaden ftz domains by autocatalytic activation of endogenous ftz expression in an additional anterior cell. This activates engrailed (en) and represses wingless (wg) expression, consistent with their proposed combinatorial control by ftz (and other pair-rule genes) to define parasegmental primordia. We propose that the anterior margin of each ftz stripe is normally defined by the posterior even-skipped (eve) boundary.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号