首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the trans-Golgi via a transport process that requires the Rab9 GTPase and the cargo adaptor TIP47. We have generated green fluorescent protein variants of Rab9 and determined their localization in cultured cells. Rab9 is localized primarily in late endosomes and is readily distinguished from the trans-Golgi marker galactosyltransferase. Coexpression of fluorescent Rab9 and Rab7 revealed that these two late endosome Rabs occupy distinct domains within late endosome membranes. Cation-independent mannose 6-phosphate receptors are enriched in the Rab9 domain relative to the Rab7 domain. TIP47 is likely to be present in this domain because it colocalizes with the receptors in fixed cells, and a TIP47 mutant disrupted endosome morphology and sequestered MPRs intracellularly. Rab9 is present on endosomes that display bidirectional microtubule-dependent motility. Rab9-positive transport vesicles fuse with the trans-Golgi network as followed by video microscopy of live cells. These data provide the first indication that Rab9-mediated endosome to trans-Golgi transport can use a vesicle (rather than a tubular) intermediate. Our data suggest that Rab9 remains vesicle associated until docking with the Golgi complex and is rapidly removed concomitant with or just after membrane fusion.  相似文献   

2.
3.
A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O-permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome.  相似文献   

4.
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus.  相似文献   

5.
Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.  相似文献   

6.
  1. Download : Download high-res image (254KB)
  2. Download : Download full-size image
  相似文献   

7.
VARP (VPS9‐ankyrin‐repeat protein, also known as ANKRD27) was originally identified as an N‐terminal VPS9 (vacuolar protein sorting 9)‐domain‐containing protein that possesses guanine nucleotide exchange factor (GEF) activity toward small GTPase Rab21 and contains two ankyrin repeat (ANKR) domains in its central region. A number of VARP‐interacting molecules have been identified during the past five years, and considerable attention is now being directed to the multiple roles of VARP in endosomal trafficking. More specifically, VARP is now known to interact with three different types of key membrane trafficking regulators, i.e. small GTPase Rabs (Rab32, Rab38 and Rab40C), the retromer complex (a sorting nexin dimer, VPS26, VPS29 and VPS35) and R‐SNARE VAMP7. By binding to several of these molecules, VARP regulates endosomal trafficking, which underlies a variety of cellular events, including melanogenic enzyme trafficking to melanosomes, dendrite outgrowth of melanocytes, neurite outgrowth and retromer‐mediated endosome‐to‐plasma membrane sorting of transmembrane proteins.   相似文献   

8.
The small-GTPase family of ADP ribosylation factors (ARFs) recruit coat proteins to promote vesicle budding. ARFs are activated by an association with sec7-containing exchange factors which load them with GTP. In epithelial cells, the small GTPase ARF6 operates within the endocytic system and has been shown to associate with ARNO to promote apical endocytosis and early to late endosomal trafficking. EFA6 has been shown to stimulate tight-junction formation and maintenance. Here, we show that in polarized epithelial MDCK cells, EFA6 is localized to early endosomes, causes their dramatic enlargement, and promotes basolateral targeting of IgA, which is normally targeted to the apical PM. These results suggest that the physiological function of ARF6 within the endocytic system is regulated by the exchange factor it associates with.  相似文献   

9.
Tyrosine phosphorylation of the Rab24 GTPase in cultured mammalian cells   总被引:4,自引:0,他引:4  
Several members of the large family of Rab GTPases have been shown to function in vesicular trafficking in mammalian cells. However, the exact role of Rab24 remains poorly defined. Rab24 differs from other Rab proteins in that it has a low intrinsic GTPase activity and is not efficiently prenylated. Here we report an additional unique property of Rab24; i.e., the protein can undergo tyrosine phosphorylation when overexpressed in cultured cells. Immunoblot analyses with specific anti-phosphotyrosine monoclonal antibodies revealed the presence of phosphotyrosine (pTyr) on myc-Rab24 in whole cell lysates and immunoprecipitated samples. No pTyr was detected on other overexpressed myc-tagged GTPases (H-Ras, Rab1b, Rab6, Rab11 or Rab13). Comparisons of myc-Rab24 in the soluble and particulate fractions from HEK293 and HEp-2 cells indicated that the cytosolic pool of Rab24 was more heavily phosphorylated than the membrane pool. Treatment of transfected cells with the broad-spectrum tyrosine kinase inhibitor, genistein, as well as the specific Src-family kinase inhibitor, PP2, eliminated the pTyr signal from Rab24. In contrast the receptor tyrosine kinase inhibitor, tyrphostin A25, had no effect. Tyrosine phosphorylation of Rab24 was reduced by alanine substitution of two unique tyrosines, one found in a strong consensus phosphorylation motif (Y [Formula: see text] ) in the hypervariable domain (Y172) and the other falling within the GXXXGK(S/T) motif known as the P-loop (Y17). The latter region is known to influence GTP hydrolysis in Rab proteins, so the phosphorylation of Y17 could contribute to the low intrinsic GTPase activity of Rab24. This is the first report of tyrosine phosphorylation in any member of the Ras superfamily and it raises the possibility that this type of modification could influence Rab24 targeting and interactions with effector protein complexes.  相似文献   

10.
When marked for degradation, surface receptor and transporter proteins are internalized and delivered to endosomes where they are packaged into intralumenal vesicles (ILVs). Many rounds of ILV formation create multivesicular bodies (MVBs) that fuse with lysosomes exposing ILVs to hydrolases for catabolism. Despite being critical for protein degradation, the molecular underpinnings of MVB‐lysosome fusion remain unclear, although machinery underlying other lysosome fusion events is implicated. But how then is specificity conferred? And how is MVB maturation and fusion coordinated for efficient protein degradation? To address these questions, we developed a cell‐free MVB‐lysosome fusion assay using Saccharomyces cerevisiae as a model. After confirming that the Rab7 ortholog Ypt7 and the multisubunit tethering complex HOPS (ho motypic fusion and vacuole p rotein s orting complex) are required, we found that the Qa‐SNARE Pep12 distinguishes this event from homotypic lysosome fusion. Mutations that impair MVB maturation block fusion by preventing Ypt7 activation, confirming that a Rab‐cascade mechanism harmonizes MVB maturation with lysosome fusion.   相似文献   

11.
12.
陈金峰  胡斌杰 《植物研究》2008,28(2):232-235
酶母的GYP能够加速小G蛋白YPT内在的GTPase的活性,是因为其基因所编码的氨基酸序列中具有保守的TBC区域,拟南芥AtGAPs的氨基酸序列中也具有此保守区,但对于它们的生物学功能,特别对胁迫的反应却研究不多。我们鉴定得到了RabGAP7基因的纯合突变体。通过根伸长和失水实验发现,与野生型相比,突变体幼苗对ABA和脱水不敏感。另外,表达分析表明,该基因在转录水平上对GPA1和Rab7起到负调控作用。这些结果暗示着RabGAP7可能通过调节G蛋白来参与了ABA反应。  相似文献   

13.
Infectious HIV-1 assembles in late endosomes in primary macrophages   总被引:27,自引:0,他引:27  
Although human immunodeficiency virus type 1 (HIV-1) is generally thought to assemble at the plasma membrane of infected cells, virions have been observed in intracellular compartments in macrophages. Here, we investigated virus assembly in HIV-1-infected primary human monocyte-derived macrophages (MDM). Electron microscopy of cryosections showed virus particles, identified by their morphology and positive labeling with antibodies to the viral p17, p24, and envelope proteins, in intracellular vacuoles. Immunolabeling demonstrated that these compartments contained the late endosomal marker CD63, which was enriched on vesicles within these structures and incorporated into the envelope of budding virions. The virus-containing vacuoles were also labeled with antibodies against LAMP-1, CD81, and CD82, which were also incorporated into the viral envelope. To assess the cellular source of infectious viruses derived from MDM, virus-containing media from infected cells were precipitated with specific antibodies. Only antibodies against antigens found in late endosomes precipitated infectious virus, whereas antibodies against proteins located primarily on the cell surface did not. Our data indicate that most of the infectious HIV produced by primary macrophages is assembled on late endocytic membranes and acquires antigens characteristic of this compartment. This notion has significant implications for understanding the biology of HIV and its cell-cell transmission.  相似文献   

14.
The Sec34/35 complex was identified as one of the evolutionarily conserved protein complexes that regulates a cis-Golgi step in intracellular vesicular transport. We have identified three new proteins that associate with Sec35p and Sec34p in yeast cytosol. Mutations in these Sec34/35 complex subunits result in defects in basic Golgi functions, including glycosylation of secretory proteins, protein sorting, and retention of Golgi resident proteins. Furthermore, the Sec34/35 complex interacts genetically and physically with the Rab protein Ypt1p, intra-Golgi SNARE molecules, as well as with Golgi vesicle coat complex COPI. We propose that the Sec34/35 protein complex acts as a tether that connects cis-Golgi membranes and COPI-coated, retrogradely targeted intra-Golgi vesicles.  相似文献   

15.
目的初步明确Rab13 GTPase在大鼠精子发生及成熟过程中的表达情况和可能发挥的作用。方法首先通过RT-PCR技术检测了Rab13 GTPase在不同日龄大鼠睾丸组织中的表达,又利用RT-PCR和Western-blot检测了Rab13在大鼠不同组织中的表达情况,最后采用免疫组化技术检测Rab13 GTPase在大鼠不同期别生精上皮中的分布。结果 RT-PCR显示Rab13 GTPase mRNA水平在40日龄大鼠睾丸组织中表达达到最高峰;在40日龄大鼠,Rab13 GTPase在心、脑、肺、脾、睾丸等5种组织中均有表达,在肺组织中表达量最多;在精子细胞成熟过程中,Rab13在生精上皮基底部及生精细胞周围都有分布,在精子释放前则主要集中分布于生精上皮基底部。结论 Rab13 GTPase的分布,可能随生精上皮周期的变化而对精子发生过程具有一定的调节作用。  相似文献   

16.
17.
Extensive studies on the molecular mechanisms of vesicular trafficking have revealed that molecules involved in this cellular function are remarkably well conserved from yeast to higher plants. However, it is not clear at all how a variety of organisms maintain the individual divergent systems using the common machinery of vesicular traffic. We have been attempting to understand the roles and regulatory mechanisms of vesicular traffic in plants through the study of Rab/Ypt GTPases. Ara proteins are Rab/Ypt homologues ofArabidopsis, which are implicated in the regulation of vesicular traffic. Their biochemical properties are similar to those of the Rab/Ypt proteins from animal and yeast cells. The overexpression ofARA2 orARA4 causes pleiotropic morphological abnormalities in the transgenic tobacco plants. The GTPase cycle of Ara proteins has to be strictly controlled for their proper functions. We have identified two classes of regulator molecules of Ara2 and Ara4. One is the GTPase activating protein (GAP), and the other is the GDP dissociation inhibitor (GDI). GAP has been identified as an activity accelerating the hydrolysis of GTP by Ara2 or Ara4. GDI (AtGDI1) has been isolated as a molecule interacting with Ara4 using a novel method for detecting interactions between foreign molecules in yeast. Further studies on the interacting molecules should unveil the regulatory system of and signal transduction pathway via Ara proteins. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the Internation Prize for Biology “Frontier of Plant Biology”  相似文献   

18.
为了研究短发夹RNA(shRNA)介导的RNA干扰对麻疹病毒体外复制的抑制作用,构建靶向与麻疹病毒复制密切相关的宿主细胞基因Rab9 GTPase基因特异性shRNA表达载体,分别转染Vero-E6和B95a细胞后感染麻疹病毒Edmonston株和野生株。逆转录聚合酶链反应(RT-PCR)和免疫印迹技术(Western-blot)检测转染细胞内Rab9 GTPase基因表达水平;标准蚀斑试验测定麻疹病毒滴度。结果显示转染细胞内Rab9 GTPase mRNA和蛋白质的表达水平同对照组相比明显降低,标准蚀斑试验显示麻疹病毒的复制受到显著抑制,抑制率达到90%以上。结果表明载体介导的shRNAs能通过特异性下调Rab9 GTPase基因表达抑制麻疹病毒体外复制,Rab9 GTPase可能成为治疗麻疹病毒感染的RNA干扰靶。  相似文献   

19.
Takunori Satoh  Yuri Nakamura 《Fly》2016,10(3):123-127
Selective membrane transport pathways are essential for cells in situ to construct and maintain a polarized structure comprising multiple plasma membrane domains, which is essential for their specific cellular functions. Genetic screening in Drosophila photoreceptors harboring multiple plasma membrane domains enables the identification of genes involved in polarized transport pathways. Our genome-wide high-throughput screening identified a Rab6-null mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with an intact basolateral transport. Although the functions of Rab6 in the Golgi apparatus are well known, its function in polarized transport is unexpected.

The mutant phenotype and localization of Rab6 strongly indicate that Rab6 regulates transport between the trans-Golgi network (TGN) and recycling endosomes (REs): basolateral cargos are segregated at the TGN before Rab6 functions, but cargos going to multiple apical domains are sorted at REs. Both the medial-Golgi resident protein Metallophosphoesterase (MPPE) and the TGN marker GalT::CFP exhibit diffused co-localized distributions in Rab6-deficient cells, suggesting they are trapped in the retrograde transport vesicles returning to trans-Golgi cisternae. Hence, we propose that Rab6 regulates the fusion of retrograde transport vesicles containing medial, trans-Golgi resident proteins to the Golgi cisternae, which causes Golgi maturation to REs.  相似文献   


20.
Macrophage migration into injured or infected tissue is a key aspect in the pathophysiology of many diseases where inflammation is a driving factor. Membrane‐type‐1 matrix metalloproteinase (MT1‐MMP) cleaves extracellular matrix components to facilitate invasion. Here we show that, unlike the constitutive MT1‐MMP surface recycling seen in cancer cells, unactivated macrophages express low levels of MT1‐MMP. Upon lipopolysaccharide (LPS) activation, MT1‐MMP synthesis dramatically increases 10‐fold at the surface by 15 hours. MT1‐MMP is trafficked from the Golgi complex to the surface via late endosomes/lysosomes in a pathway regulated by the late endosome/lysosome R‐SNAREs VAMP7 and VAMP8. These form two separate complexes with the surface Q‐SNARE complex Stx4/SNAP23 to regulate MT1‐MMP delivery to the plasma membrane. Loss of either one of these SNAREs leads to a reduction in surface MT1‐MMP, gelatinase activity and reduced invasion. Thus, inhibiting MT1‐MMP transport through this pathway could reduce macrophage migration and the resulting inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号