首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catabolic fate of 3,4-dihydroxyphenethyl alcohol (DHPA) and 3,4-dihydroxyphenylethyl glycol (DHPG) in insect cuticle was determined for the first time using cuticular enzyme(s) from Sarcophaga bullata and compared with mushroom tyrosinase-medicated oxidation. Mushroom tyrosinase converted both DHPA and DHPG to their corresponding quinone derivatives, while cuticular enzyme(s) partly converted DHPA to DHPG. Cuticular enzyme(s)-mediated oxidation of DHPA also accompanied the covalent binding of DHPA to the cuticle. Cuticle-DHPA adducts, upon pronase digestion, released peptides that had bound catechols. 3,4-Dihydroxyphenyl-acetaldehyde, the expected product of side chain desaturation of DHPA, was not formed at all. The presence of N-acetylcysteine, a quinone trap, in the reaction mixture containing DHPA and cuticle resulted in the generation of DHPA-quinone-N-acetylcysteine adduct and total inhibition of DHPG formation. The insect enzyme(s) converted DHPG to its quinone at high substrate concentration and to 2-hydroxy-3′,4′-dihydroxyacetophenone at low concentration. They converted exogenously added DHPA-quinone to DHPG, but acted sluggishly on DHPG-quinone. These results are consistent with the enzymatic transformations of phenoloxidase-generated quinones to quinone methides and subsequent nonenzymatic transformation of the latter to the observed products. Thus, quinone methide formation in insect cuticle seems to be caused by the combined action of two enzymes, phenoloxidase and quinone tautomerase, rather than the action of quinone methide-generating phenoloxidase (Sugumaran: Arch Insect Biochem Physiol 8, 73–88, 1988). It is proposed that DHPA and DHPG in combination can be used effectively to examine the participation of (1) quinone, (2) quinone methide, and (3) dehydro derivative intermediates in the metabolism of 4-alkylcatechols for cuticular sclerotization.  相似文献   

2.
Proteins solubilized from the pharate cuticle of Manduca sexta were fractionated by ammonium sulfate precipitation and activated by the endogenous enzymes. The activated fraction readily converted exogenously supplied N-acetyldopamine (NADA) to N-acetylnorepinephrine (NANE). Either heat treatment (70 degrees C for 10 min) or addition of phenylthiourea (2.5 microM) caused total inhibition of the side chain hydroxylation. If chemically prepared NADA quinone was supplied instead of NADA to the enzyme solution containing phenylthiourea, it was converted to NANE. Presence of a quinone trap such as N-acetylcysteine in the NADA-cuticular enzyme reaction not only prevented the accumulation of NADA quinone, but also abolished NANE production. In such reaction mixtures, the formation of a new compound characterized as NADA-quinone-N-acetylcysteine adduct could be readily witnessed. These studies indicate that NADA quinone is an intermediate during the side chain hydroxylation of NADA by Manduca cuticular enzyme(s). Since such a conversion calls for the isomerization of NADA quinone to NADA quinone methide and subsequent hydration of NADA quinone methide, attempts were also made to trap the latter compound by performing the enzymatic reaction in methanol. These attempts resulted in the isolation of beta-methoxy NADA (NADA quinone methide methanol adduct) as an additional product. Similarly, when the N-beta-alanyldopamine (NBAD)-Manduca enzyme reaction was carried out in the presence of L-kynurenine, two diastereoisomers of NBAD quinone methide-kynurenine adduct (= papiliochrome IIa and IIb) could be isolated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The enzymes involved in the side chain hydroxylation and side chain desaturation of the sclerotizing precursor N-acetyldopamine (NADA) were obtained in the soluble form from the larval cuticle of Sarcophaga bullata and the mechanism of the reaction was investigated. Phenylthiourea, a well-known inhibitor of phenoloxidases, drastically inhibited both the reactions, indicating the requirement of a phenoloxidase component. N-acetylcysteine, a powerful quinone trap, trapped the transiently formed NADA quinone and prevented the production of both N-acetylnorepinephrine and dehydro NADA. Exogenously added NADA quinone was readily converted by these enzyme preparations to N-acetylnorepinephrine and dehydro NADA. 4-Alkyl-o-quinone:2-hydroxy-p-quinone methide isomerase obtained from the cuticular preparations converted chemically synthesized NADA quinone to its quinone methide. The quinone methide formed reacted rapidly and nonenzymatically with water to form N-acetylnorepinephrine as the stable product. Similarly 4-(2-hydroxyethyl)-o-benzoquinone was converted to 3,4-dihydroxyphenyl glycol. When the NADA quinone-quinone isomerase reaction was performed in buffer containing 10% methanol, beta-methoxy NADA was obtained as an additional product. Furthermore, the quinones of N-acetylnorepinephrine and 3,4-dihydroxyphenyl glycol were converted to N-acetylarterenone and 2-hydroxy-3',4'-dihydroxyacetophenone, respectively, by the enzyme. Comparison of nonenzymatic versus enzymatic transformation of NADA to N-acetylnorepinephrine revealed that the enzymatic reaction is at least 100 times faster than the nonenzymatic rate. Resolution of the NADA desaturase system on Benzamidine Sepharose and Sephacryl S-200 columns yielded the above-mentioned quinone isomerase and NADA quinone methide:dehydro NADA isomerase. The latter, on reconstitution with mushroom tyrosinase and hemolymph quinone isomerase, catalyzed the biosynthesis of dehydro NADA from NADA with the intermediary formation of NADA quinone and NADA quinone methide. The results are interpreted in terms of the quinone methide model elaborated by our group [Sugumaran: Adv. Insect Physiol. 21:179-231, 1988; Sugumaran et al.: Arch. Insect Biochem. Physiol. 11:109, 1989] and it is concluded that the two enzyme beta-sclerotization model [Andersen: Insect Biochem. 19:59-67, 375-382, 1989] is inadequate to account for various observations made on insect cuticle.  相似文献   

4.
《Insect Biochemistry》1989,19(8):803-808
Insect cuticles catalyze the formation of N-acetylnorepinephrine (NANE) and N-β-alanylnorepinephrine (NBANE) from N-acetyldopamine (NADA) and N-β-alanyldopamine (NBAD), respectively. An enzyme, involved in the reaction, has now been isolated from fifth stage larval cuticle of Hyalophora cecropia and partially characterized. The enzyme alone has hardly any activity towards NADA, but together with diphenoloxidases [catechol oxidases (EC 1.10.3.1) or laccases (EC 1.10.3.2)] it will produce NANE as the main product from NADA, indicating that NADA-quinone is the actual substrate for the enzyme. The enzyme is presumably an ortho-quinone para-quinone methide isomerase, and formation of NANE is due to non-enzymatic addition of water to the quinone methide. The enzyme combination mushroom tyrosinase-cuticular isomerase has pH optimum at 5.5, and the optimal substrate concentration is about 10 mM NADA.Together with the endogenous cuticular diphenoloxidases the isomerase can account for the formation of NANE observed when pieces of intact cuticle are incubated with NADA, and for the presence of NANE and NBANE in sclerotized cuticle.The possible roles of the enzyme in sclerotization and defense reactions in insects are briefly discussed.  相似文献   

5.
The mechanism of formation of quinone methide from the sclerotizing precursor N-acetyldopamine (NADA) was studied using three different cuticular enzyme systems viz. Sarcophaga bullata larval cuticle, Manduca sexta pharate pupae, and Periplaneta americana presclerotized adult cuticle. All three cuticular samples readily oxidized NADA. During the enzyme-catalyzed oxidation, the majority of NADA oxidized became bound covalently to the cuticle through the side chain with the retention of o-diphenolic function, while a minor amount was recovered as N-acetylnorepinephrine (NANE). Cuticle treated with NADA readily released 2-hydroxy-3′,4′-dihydroxyacetophenone on mild acid hydrolysis confirming the operation of quinone methide sclerotization. Attempts to demonstrate the direct formation of NADA-quinone methide by trapping experiments with N-acetylcysteine surprisingly yielded NADA-quinone-N-acetylcysteine adduct rather than the expected NADA-quinone methide-N-acetylcysteine adduct. These results are indicative of NADA oxidation to NADA-quinone and its subsequent isomerization to NADA-quinone methide. Accordingly, all three cuticular samples exhibited the presence of an isomerase, which catalyzed the conversion of NADA-quinone to NADA-quinone methide as evidenced by the formation of NANE—the water adduct of quinone methide. Thus, in association with phenoloxidase, newly discovered quinone methide isomerase seems to generate quinone methides and provide them for quinone methide sclerotization.  相似文献   

6.
The mechanism of oxidation of two related sclerotizing precursors—N-acetyldopamine and N-acetylnorepinephrine—by the cuticular phenoloxidase from Sarcophaga bullata was studied and compared with mushroom tyrosinase-mediated oxidation. While the fungal enzyme readily generated the quinone products from both of these catecholamine derivatives, sarcophagid enzyme converted N-acetyldopamine to a quinone methide derivative, which was subsequently bound to the cuticle with the regeneration of o-dihydroxy phenolic function as outlined in an earlier publication [Sugumaran: Arch Insect Biochem Physiol, 8, 73 (1988)]. However, it converted N-acetylnorepinephrine to its quinone and not to the quinone methide derivative. Proteolytic digests of N-acetyldopamine-treated cuticle liberated peptides that had covalently bound catechols, while N-acetylnorepinephrine-treated cuticle did not release such peptides. Acid hydrolysis of N-acetyldopamine-treated cuticle, but not N-acetylnorepinephrine-treated cuticle liberated 2-hydroxy-3′,4′-dihydroxyacetophenone and arterenone. These results further confirm the unique conversion of N-acetyldopamine to its corresponding quinone methide derivative and N-acetylnorepinephrine to its quinone derivative by the cuticular phen-oloxidase. Significance of this differential mechanism of oxidation for sclerotization of insect cuticle is discussed.  相似文献   

7.
Insect phenoloxidases participate in three physiologically important processes, viz., cuticular hardening (sclerotization), defense reactions (immune reaction), and wound healing. Arrest or even delay of any of these processes compromises the survival of insects. Since the products of phenoloxidase action, viz., quinones, are cytotoxic, uncontrolled phenoloxidase action is deleterious to the insects. Therefore, the activity of this important enzyme has to be finely controlled. A novel inhibition of insect phenoloxidases, which serves as a new regulatory mechanism for control of its activity, is described. The activity of phenoloxidases isolated from both Sarcophaga bullata and Manduca sexta is drastically inhibited by quinone isomerase (isolated from Calliphora), an enzyme that utilizes the phenoloxidase-generated 4-alkylquinones. In turn, phenoloxidase reciprocated the inhibition of isomerase. By forming a complex and controlling each other's activity, these two enzymes seem to regulate the levels of endogenously quinones. In support of this contention, an endogenous complex consisting of phenoloxidase, quinone isomerase, and quinone methide isomerase was characterized from the insect, Calliphora. This sclerotinogenic complex was isolated and purified by borate extraction of the larval cuticle, ammonium sulfate precipitation, and Sepharose 6B column chromatography. The complex exhibited a molecular mass of about 620-680 kDa, as judged by size-exclusion chromatography on Sepharose 6B and HPLC and did not even enter 3% polyacrylamide gel during electrophoresis. The phenoloxidase activity of the complex exhibited a wide substrate specificity. Incubation of the complex with N-acetyldopamine rapidly generated N-acetylnorepinephrine, dehydro-N-acetyldopamine, and its dimers. In addition, transient accumulation of N-acetyldopamine quinone was also observed. These results confirm the presence of phenoloxidase, quinone isomerase, and quinone methide isomerase in the complex. Attempts to dissociate the complex with even trace amounts of SDS ended in the total loss of quinone isomerase activity. The complex does not seems to be made up of stoichiometric amounts of individual enzymes as the ratio of phenoloxidase to quinone isomerase varied from preparation to preparation. It is proposed that the complex formation between sequential enzymes of sclerotinogenic pathway is advantageous for the organism to effectively channel various reactive intermediates during cuticular hardening.  相似文献   

8.
S J Saul  M Sugumaran 《FEBS letters》1989,255(2):340-344
The enzyme system causing the side chain desaturation of the sclerotizing precursor, N-acetyldopamine (NADA), was solubilized from the larval cuticle of Sarcophaga bullata and resolved into three components. The first enzyme, phenoloxidase, catalyzed conversion of NADA to NADA quinone and provided it for the second enzyme (NADA quinone isomerase), which makes the highly unstable NADA quinone methide. Quinone methide was hydrated rapidly and nonenzymatically to form N-acetylnorepinephrine. In addition, it also served as the substrate for the last enzyme, quinone methide tautomerase, which converted it to 1,2-dehydro-NADA. Reconstitution of NADA side chain desaturase activity was achieved by mixing the last enzyme fraction with NADA quinone isomerase, obtained from the hemolymph of the same organism, and mushroom tyrosinase. Therefore, NADA side chain desaturation observed in insects is caused by the combined action of three enzymes rather than the action of a single specific NADA desaturase, as previously thought.  相似文献   

9.
The properties of cuticular enzymes involved in sclerotization of Drosophila melanogaster puparium were examined. The cuticle-bound phenoloxidase from the white puparium exhibited a pH optimum of 6.5 in phosphate buffer and oxidized a variety of catecholic substrates such as 4-methylcatechol, N-beta-alanyldopamine, dopa, dopamine, N-acetyldopamine, catechol, norepinephrine, 3,4-dihydroxyphenylglycol, 3,4-dihydroxybenzoic acid, and 3,4-dihydroxyphenylacetic acid. Phenoloxidase inhibitors such as potassium cyanide and sodium fluoride inhibited the enzyme activity drastically, but phenylthiourea showed marginal inhibition only. This result, coupled with the fact that syringaldazine served as the substrate for the insoluble enzyme, confirmed that cuticular phenoloxidase is of the "laccase" type. In addition, we also examined the mode of synthesis of the sclerotizing precursor, 1,2-dehydro-N-acetyldopamine. Our results indicate that this catecholamine derivative is biosynthesized from N-acetyldopamine through the intermediate formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide as established for Sarcophaga bullata [Saul, S. and Sugumaran, M., F.E.B.S. Letters 251, 69-73 (1989)]. Accordingly, successful solubilization and fractionation of cuticular enzymes involved in the introduction of a double bond in the side chain of N-acetyldopamine indicated that they included o-diphenoloxidase, 4-alkyl-o-quinone:p-quinone methide isomerase, and N-acetyldopamine quinone methide:dehydro N-acetyldopamine isomerase and not any side chain desaturase.  相似文献   

10.
In accordance with our earlier results, quinone methide formation was confirmed to be the major pathway for the oxidation of N-acetyldopamine (NADA) by cuticle-bound enzymes from Sarcophaga bullata larvae. In addition, with the use of a newly developed HPLC separation condition and cuticle prepared by gentle procedures, it could be demonstrated that 1, 2-dehydro-NADA and its dimeric oxidation products are also generated in the reaction mixture containing a high concentration of NADA albeit at a much lower amount than the NADA quinone methide water adduct, viz., N-acetylnorepinephrine (NANE). By using different buffers, it was also possible to establish the accumulation of NADA quinone in reaction mixtures containing NADA and cuticle. That the 1,2-dehydro-NADA formation is due to the action of a NADA desaturase system was established by pH and temperature studies and by differential inhibition of NANE production. Of the various cuticle examined, adult cuticle of Locusta migratoria, presclerotized cuticle of Periplaneta americana, and white puparial cases of Drosophila melanogaster exhibited more NADA desaturase activity than NANE generating activity, while the reverse was observed with the larval cuticle of Tenebrio molitor and pharate pupal cuticle of Manduca sexta. These studies indicate that both NADA quinone methide and 1, 2-dehydro NADA are formed during enzymatic activation of NADA in insect cuticle. Based on these results, a unified mechanism for β-sclerotization involving quinone methides as the reactive species is presented.  相似文献   

11.
M Sugumaran  S Saul  V Semensi 《FEBS letters》1989,252(1-2):135-138
We have demonstrated that quinone methide formation is an important aspect of insect physiology and proposed that enzymatically generated quinone methides react nonenzymatically with water or other nucleophiles to form Michael-1,6-addition products [(1988) Adv. Insect Physiol. 21, 179-231; (1989) J. Cell. Biochem. suppl. 13C, 58]. Using a purified o-quinone isomerase from the larval cuticle of Sacrophaga bullata and mushroom tyrosinase, we now demonstrate that transiently formed N-acetyldopamine quinone methide from N-acetyldopamine can be trapped by methanol to produce beta-methoxy N-acetyldopamine. The methanol adduct thus formed was found to be a racemic mixture and can be resolved into the optical isomers on cyclodextrin chiral column. These results confirm our contention that enzymatically generated quinone methides are nonenzymatically and nonstereoselectively transformed to Michael-1,6-adducts by reaction with water or other nucleophiles.  相似文献   

12.
《Insect Biochemistry》1990,20(3):251-260
Two soluble phenoloxidases were partially purified from pharate pupal integument of Manduca sexta by gel filtration or sucrose density gradient centrifugation. Thiourea was used to retard the formation of higher molecular weight aggregates. Subsequent analysis by gel filtration HPLC showed that the apparent molecular weights were about 300 kD and >700 kD. The smaller phenoloxidase was further purified by anion exchange HPLC. In comparative studies with mushroom tyrosinase and a fungal laccase, the Manduca phenoloxidases were identified as tyrosinases, since they exhibited monophenol mono-oxygenase activity (EC 1.14.18.1) and catechol oxidase activity (EC 1.10.3.1). Both enzyme preparations catalyzed ortho-hydroxylation of tyrosine at a relatively show rate, oxidized o-diphenols at a much faster rate than p-diphenols or monophenols, had broad pH optima from about pH 5.5–7.5, and were completely inhibited by 1 μM phenylthiourea, N-β-alanyldopamine (NBAD) and N-β-alanylnorepinephrine (NBANE), which are both abundant in pupal cuticle, were oxidized to o-quinones by the tyrosinases, with the former catecholamine oxidizing at a 10-fold higher rate than the latter. NBANE was synthesized from NBAD, apparently by spontaneous tautomerization of the o-quinone to a p-quinone methide, which then reacted with water to form the β-hydroxylated product. The possible role of tyrosinase in insect integument is discussed.  相似文献   

13.
S J Saul  M Sugumaran 《FEBS letters》1989,249(2):155-158
Melanization and encapsulation of invading foreign organisms observed during the immune response in insects is known to be due to the action of activated phenoloxidase. Phenoloxidase-generated quinones are deposited either directly or after self-polymerization on foreign objects accounting for the observed reactions. Since the reactions of quinones are nonenzymatic, they do not discriminate self from nonself and hence will also destroy self-matter. In this report we present evidence for the presence of a novel quinone/quinone methide isomerase in the hemolymph of Sarcophaga bullata which destroys long-lived quinones and hence acts to protect the self-matter. Quinone methides, formed by the action of this enzyme on physiologically important quinones, being unstable undergo rapid hydration to form nontoxic metabolites.  相似文献   

14.
S J Saul  M Sugumaran 《FEBS letters》1989,251(1-2):69-73
A novel enzyme system that desaturates the side chain of the catecholamine derivative, N-acetyldopamine (NADA), was isolated and characterized from the larval cuticle of Sarcophaga bullata. The NADA desaturase system which converts NADA to 1,2-dehydro-NADA, surprisingly, does not resemble dehydrogenases such as succinate dehydrogenase. It uniquely performs the desaturation reaction by oxidizing NADA to its corresponding quinone and subsequently converting the resultant quinone to 1,2-dehydro-NADA via NADA quinone methide. Accordingly, desaturase enzyme preparation contained both o-diphenoloxidase activity and NADA quinone:NADA quinone methide isomerase activity. In addition, inhibition studies as well as trapping experiments also confirmed the obligatory formation of NADA quinone as the transient intermediate of the NADA desaturation. It is the first report of a cell-free system causing the side chain desaturation of any catecholamine derivative.  相似文献   

15.
The phenoloxidase system responsible for the sclerotization of cockroach ootheca is found to be present as an inactive form in the left colleterial gland of Periplaneta americana. The supernatant fraction obtained by centrifugation of the milky white secretions contained the inactive phenoloxidase which required both sodium dodecyl sulfate (SDS) and the insoluble sediment for exhibiting enzyme activity. Bovine serum albumin could replace the sediment in the activation process. Proteins separated from the supernatant fraction by molecular sieve chromatography on Sephadex G-25 did not require either albumin or the sediment, but required SDS for exhibiting the phenoloxidase activity. Among the detergents tested, SDS (anionic) and cetylpyridinium chloride (cationic) activated the phenoloxidase, but CHAPS (zwitterionic) or nonionic detergents failed to activate the enzyme. The activation caused by SDS occurred well below the critical micellar concentration of SDS indicating that SDS is causing the activation by binding to the protein and altering its conformation. Chloroform-methanol extracts of vestibulum or right gland could replace SDS confirming the presence of endogenous activator(s) of phenoloxidase system. A variety of exogenously added lipids could activate the latent enzyme, among which linoleate, oleate, laurate, linolenate, phosphatidylethanolamine, and phosphatidylglycerol proved to be the effective activators of the latent phenoloxidase. Partially purified phenoloxidase was found to be extremely labile and lost its activity on a) freezing and thawing, b) dialysis, and c) heating for 10 min at 55 degrees C. It exhibited a pH optimum of 7 and was inhibited drastically by phenylthiourea and diethyldithiocarbamate. It readily oxidized a number of o-diphenols such as 3,4-dihydroxybenzylalcohol, 3,4-dihydroxyphenethyl alcohol, catechol, N-acetyldopamine, N-acetylnorepinephrine, dopa, dopamine, etc., but failed to oxidize both 3,4-dihydroxybenzoic acid and 3,4-dihydroxybenzaldehyde. It neither converted the typical laccase substrate syringaldazine to its quinone methide product, nor oxidized the p-diphenols, hydroquinone and methylhydroquinone. Therefore, the enzyme participating in the quinone tanning of cockroach ootheca appears to be a typical o-diphenol oxidase and not a laccase as previously thought.  相似文献   

16.
The hemolymph of Sarcophaga bullata larvae was activated with either zymosan or proteolytic enzymes such as chymotrypsin or subtilisin and assayed for phenoloxidase activity by two different assays. While oxygen uptake studies readily attested to the wide specificty of activated phenoloxidase, visible spectral studies failed to confirm the accumulation of quinone products in the case of 4-alkyl substituted catechols such as N-acetyldopamine and N-β-alanyldopamine. Sepharose 6B column chromatography of the activated hemolymph resolved phenoloxidase activity into two fractions, designated as A and B. Peak A possessed typical o-diphenoloxidase (o-diphenol, oxygen oxidoreductase EC 1.10.3.1) activity, while peak B oxidized physiologically important catecholamine derivatives such as N-acetyldopamine, N-acetylnorepinephrine, and N-β-alanyldopamine into N-acetylnorepinephrine, N-acetylarterenone, and N-β-alanylnorepinephrine, respectively, and converted 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxyphenylglycol into 3,4-dihydroxymandelic acid, 3,4-dihydroxybenzaldehyde, and 2-hydroxy-3′,4′-dihydroxyacetophenone, respectively. These transformations are consistent with the conversion of phenoloxidase-generated quinones to quinone methides and subsequent non-enzymatic transformations of quinone methides. Accordingly, Peak B contained both o-diphenoloxidase activity and quinone tautomerase activity. Sepharose 6B column chromatography of unactivated hemolymph resulted in the separation of quinone tautomerase from prophenoloxidase. The tautomerase rapidly converted both chemically made and mushroom tyrosinase-generated quinones to quinone methides. Thus the failure to observe the accumulation of quinones with N-acyl derivatives of dopamine and related compounds in the whole hemolymph is due to the rapid conversion of these long lived toxic quinones to short lived quinone methides. The latter, being unstable, undergo rapid non-enzymatic transformations to form side-chain-oxygenated products that are non-toxic. The possible roles of quinone isomerase and its reaction products—quinone methides—as essential components of sclerotization of cuticle and defense reaction of Sarcophaga bullata are discussed.  相似文献   

17.
Incubation of N-acetyltyrosine methyl ester with cuticular enzymes, isolated from the wandering stages of Calliphora sp larvae, resulted in the generation of N-acetyldopa methyl ester when the reaction was carried out in the presence of ascorbate which prevented further oxidation of the o-diphenolic product. Enzymatic oxidation of N-acetyldopa methyl ester ultimately generated dehydro N-acetyldopa methyl ester. The identity of enzymatically produced N-acetyldopa methyl ester and dehydro N-acetyldopa methyl ester has been confirmed by comparison of the ultraviolet and infrared spectral and chromatographic properties with those of authentic samples as well as by nuclear magnetic resonance studies. Since N-acetyldopaquinone methyl ester was also converted to dehydro N-acetyldopa methyl ester and tyrosinase was responsible for the oxidation of N-acetyldopa methyl ester, a scheme for the cuticular phenoloxidase catalyzed conversion of N-acetyltyrosine methyl ester to dehydro N-acetyldopa methyl ester involving the intermediary formation of the quinone and the quinone methide is proposed to account for the observed results. The conversion of N-acetyldopa methyl ester to dehydro derivative remarkably resembles the conversion of the sclerotizing precursor, N-acetyldopamine, to dehydro-N-acetyl-dopamine observed in the insect cuticle. Based on these comparative studies, it is proposed that peptidyl dopa derivatives could also serve as the sclerotizing precursors for the sclerotization of the insect cuticle. © 1995 Wiley-Liss, Inc.  相似文献   

18.
《Insect Biochemistry》1989,19(6):581-586
The oxidation products formed when various types of insect cuticle were incubated with N-β-alanyldopamine (NBAD) have been studied by means of reversed phase high performance liquid chromatography, and compared to the corresponding products obtained when N-acetyldopamine (NADA) was incubated with the cuticles. The results indicate that NBAD is oxidized to o-quinone and quinone methide derivatives. In contrast, NADA can be oxidized by some cuticles not only to o-quinone and quinone methide derivatives, but it can also be desaturated to α,β-dehydro-N-acetyldopamine, a probable intermediate in β-sclerotization. Some implications for in vivo sclerotization are discussed.  相似文献   

19.
An enzyme which catalyzes the conversion of certain 4-alkyl-o-benzoquinones to 2-hydroxy-p-quinone methides has been purified to apparent homogeneity from the hemolymph of Sarcophaga bullata by employing conventional protein purification techniques. The purified enzyme migrated with an approximate molecular weight of 98,000 on gel filtration chromatography. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it migrated as a single band with a molecular weight of 46,000, indicating that it is made up of two identical subunits. It exhibited a pH optimum of 6.0 and readily converted chemically synthesized as well as enzymatically generated quinones derived from N-acetyldopamine, N-beta-alanyldopamine, and 3,4-dihydroxyphenethyl alcohol to highly unstable 2-hydroxy-p-quinone methides. The quinone methides thus formed were rapidly and nonenzymatically hydrated to form side chain hydroxylated o-diphenols as the stable product. In support of this proposition, when the enzyme reaction with N-acetyldopamine quinone was conducted in the presence of 10% methanol, racemic beta-methoxy-N-acetyldopamine was recovered as an additional product. The quinones of N-acetylnorepinephrine, N-beta-alanylnorepinephrine, and 3,4-dihydroxyphenylglycol were also attacked by the isomerase, resulting in the formation of N-acetylarterenone, N-beta-alanylarterenone and 2-hydroxy-3',4'-dihydroxyacetophenone, respectively as the stable products. The isomerase converted the dihydrocaffeiyl methyl amide quinone to its quinone methide analog which rapidly tautomerized to yield caffeiyl methyl amide. The importance of quinone isomerase in insect immunity and sclerotization of insect cuticle is discussed.  相似文献   

20.
The quinone-tanning hypothesis for insect cuticle sclerotization proposes that N-acylcatecholamines are oxidized by a phenoloxidase to quinones and quinone methides, which serve as electrophilic cross-linking agents to form covalent cross-links between cuticular proteins. We investigated model reactions for protein cross-linking that occurs during insect cuticle sclerotization using recombinant pupal cuticular proteins from the tobacco hornworm, Manduca sexta, fungal or recombinant hornworm laccase-type phenoloxidase, and the cross-linking agent precursor N-acylcatecholamines, N-beta-alanydopamine (NBAD) or N-acetyldopamine (NADA). Recombinant M. sexta pupal cuticular proteins MsCP36, MsCP20, and MsCP27 were expressed and purified to near homogeneity. Polyclonal antisera to these recombinant proteins recognized the native proteins in crude pharate brown-colored pupal cuticle homogenates. Furthermore, antisera to MsCP36, which contains a type-1 Rebers and Riddiford (RR-1) consensus sequence, also recognized an immunoreactive protein in homogenates of larval head capsule exuviae, indicating the presence of an RR-1 cuticular protein in a very hard, sclerotized and nonpigmented cuticle. All three of the proteins formed small and large oligomers stable to boiling SDS treatment under reducing conditions after reaction with laccase and the N-acylcatecholamines. The optimal reaction conditions for MsCP36 polymerization were 0.3mM MsCP36, 7.4mM NBAD and 1.0U/mul fungal laccase. Approximately 5-10% of the monomer reacted to yield insoluble oligomers and polymers during the reaction, and the monomer also became increasingly insoluble in SDS solution after reaction with the oxidized NBAD. When NADA was used instead of NBAD, less oligomer formation occurred, and most of the protein remained soluble. Radiolabeled NADA became covalently bound to the MsCP36 monomer and oligomers during cross-linking. Recombinant Manduca laccase (MsLac2) also catalyzed the polymerization of MsCP36. These results support the hypothesis that during sclerotization, insect cuticular proteins are oxidatively conjugated with catechols, a posttranslational process termed catecholation, and then become cross-linked, forming oligomers and subsequently polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号