首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The average separation of the phenolic groups of tyrosine-99 and tyrosine-138 has been measured by radiationless energy transfer between each tyrosine and the nitro derivative of the second tyrosine. A separation of 16.7 ± 0.7 Å was found in the absence of Ca2+ and 15.5 ± 0.7 Å in the presence of Ca2+.  相似文献   

2.
Intracellular Ca2+ is vital for cell physiology. Disruption of Ca2+ homeostasis contributes to human diseases such as heart failure, neuron-degeneration, and diabetes. To ensure an effective intracellular Ca2+ dynamics, various Ca2+ transport proteins localized in different cellular regions have to work in coordination. The central role of mitochondrial Ca2+ transport mechanisms in responding to physiological Ca2+ pulses in cytosol is to take up Ca2+ for regulating energy production and shaping the amplitude and duration of Ca2+ transients in various micro-domains. Since the discovery that isolated mitochondria can take up large quantities of Ca2+ approximately 5 decades ago, extensive studies have been focused on the functional characterization and implication of ion channels that dictate Ca2+ transport across the inner mitochondrial membrane. The mitochondrial Ca2+ uptake sensitive to non-specific inhibitors ruthenium red and Ru360 has long been considered as the activity of mitochondrial Ca2+ uniporter (MCU). The general consensus is that MCU is dominantly or exclusively responsible for the mitochondrial Ca2+ influx. Since multiple Ca2+ influx mechanisms (e.g. L-, T-, and N-type Ca2+ channel) have their unique functions in the plasma membrane, it is plausible that mitochondrial inner membrane has more than just MCU to decode complex intracellular Ca2+ signaling in various cell types. During the last decade, four molecular identities related to mitochondrial Ca2+ influx mechanisms have been identified. These are mitochondrial ryanodine receptor, mitochondrial uncoupling proteins, LETM1 (Ca2+/H+ exchanger), and MCU and its Ca2+ sensing regulatory subunit MICU1. Here, we briefly review recent progress in these and other reported mitochondrial Ca2+ influx pathways and their differences in kinetics, Ca2+ dependence, and pharmacological characteristics. Their potential physiological and pathological implications are also discussed.  相似文献   

3.
4.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca2+ permeable ion channel using Ca2+ indicators like fluo-3. These Single Channel Ca2+ Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca2+ sparks and Ca2+ puffs caused by Ca2+ release from intracellular stores (due to the opening of ryanodine receptors and IP3 receptors, respectively). In contrast to intracellular Ca2+ release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca2+ handling in the vicinity of a channel with a known Ca2+ influx, to obtain the Ca2+ current passing through plasma membrane cation channels in near physiological solutions, to localize Ca2+ permeable ion channels on the plasma membrane, and to estimate the Ca2+ currents underlying those elementary events where the Ca2+ currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca2+ channels, and stretch-activated channels. For the L-type Ca2+ channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca2+ currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

5.
Wu J  Qu H  Jin C  Shang Z  Wu J  Xu G  Gao Y  Zhang S 《Plant cell reports》2011,30(7):1193-1200
Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca2+) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca2+ in pollen. However, direct recordings of cyclic-nucleotide-induced Ca2+ currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca2+ channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca2+ concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca2+ channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca2+ and K+. However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca2+ concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca2+ channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.  相似文献   

6.
Calcium signaling phenomena in heart diseases: a perspective   总被引:2,自引:0,他引:2  
Ca2+ is a major intracellular messenger and nature has evolved multiple mechanisms to regulate free intracellular (Ca2+)i level in situ. The Ca2+ signal inducing contraction in cardiac muscle originates from two sources. Ca2+ enters the cell through voltage dependent Ca2+ channels. This Ca2+ binds to and activates Ca2+ release channels (ryanodine receptors) of the sarcoplasmic reticulum (SR) through a Ca2+ induced Ca2+ release (CICR) process. Entry of Ca2+ with each contraction requires an equal amount of Ca2+ extrusion within a single heartbeat to maintain Ca2+ homeostasis and to ensure relaxation. Cardiac Ca2+ extrusion mechanisms are mainly contributed by Na+/Ca2+ exchanger and ATP dependent Ca2+ pump (Ca2+-ATPase). These transport systems are important determinants of (Ca2+)i level and cardiac contractility. Altered intracellular Ca2+ handling importantly contributes to impaired contractility in heart failure. Chronic hyperactivity of the β-adrenergic signaling pathway results in PKA-hyperphosphorylation of the cardiac RyR/intracellular Ca2+ release channels. Numerous signaling molecules have been implicated in the development of hypertrophy and failure, including the β-adrenergic receptor, protein kinase C, Gq, and the down stream effectors such as mitogen activated protein kinases pathways, and the Ca2+ regulated phosphatase calcineurin. A number of signaling pathways have now been identified that may be key regulators of changes in myocardial structure and function in response to mutations in structural components of the cardiomyocytes. Myocardial structure and signal transduction are now merging into a common field of research that will lead to a more complete understanding of the molecular mechanisms that underlie heart diseases. Recent progress in molecular cardiology makes it possible to envision a new therapeutic approach to heart failure (HF), targeting key molecules involved in intracellular Ca2+ handling such as RyR, SERCA2a, and PLN. Controlling these molecular functions by different agents have been found to be beneficial in some experimental conditions.  相似文献   

7.
8.
Activation of protein kinase C has been shown to reduce the Ca2+ responses of a variety of cell types. In most cases, the reduction is due to inhibition of Ca2+ influx, but acceleration of Ca2+ efflux and inhibition of Ca2+ store depletion by protein kinase C activation have also been described. For adherent RBL-2H3 mucosal mast cells, results from whole-cell patch clamp experiments suggest that protein kinase C activation reduces Ca2+ influx, while experiments with intact, fura-2-loaded cells suggest that Ca2+ influx is not affected. Here we present single-cell data from Ca2+ imaging experiments with adherent RBL-2H3 cells, showing that antigen-stimulated Ca2+ responses of phorbol 12-myristate 13-acetate (PMA)-treated cells are more transient than those of control cells. PMA also reduced the response to antigen in the absence of extracellular Ca2+, indicating that depletion of intracellular Ca2+ stores is inhibited. If PMA was added after stores had been depleted by thapsigargin, a small decrease in [Ca2+]i was observed, consistent with a slight inhibition of Ca2+ influx. However, the major effect of PMA on the antigen-stimulated Ca2+ response is to inhibit depletion of intracellular Ca2+ stores. We also show that inhibition of protein kinase C did not enhance the Ca2+ response to antigen, suggesting that inhibition of the Ca2+ response by activation of protein kinase C does not contribute to the physiological response to antigen. J. Cell. Physiol. 181:113–123, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

9.
An increasing number of studies indicate that changes in cytosolic free Ca2+ ([Ca2+]c) mediate specific types of signal transduction in plant cells. Modulation of [Ca2+]c is likely to be achieved through changes in the activity of Ca2+ channels, which catalyse passive influx of Ca2+ to the cytosol from extracellular and intracellular compartments. Voltage-sensitive Ca2+ channels have been detected in the plasma membranes of algae, where they control membrane electrical properties and cell turgor. These channels are sensitive to 1,4-dihydropyridines, which in animal cells specifically affect one class of voltage-regulated plasma membrane Ca2+ channel. Ca2+-permeable channels with different pharmacological properties have been found in the plasma membrane of higher plants. Recent evidence suggests the existence of two discrete classes of Ca2+ channel co-resident in the vacuolar membrane (tonoplast) of higher plants. The first is gated by inositol 1,4,5-trisphosphate, and bears a number of similarities to its animal counterpart which is located in the endoplasmic reticulum (ER). The second tonoplast Ca2+ channel is voltage-operated. However, the specific roles of these tonoplast channels in signal transduction have yet to be elucidated.  相似文献   

10.
Previous studies have shown that ferriprotoporphyrin IX (FP) and non-heme iron have a marked inhibitory effect on the Ca2+-Mg2+-ATPase activity of isolated red cell membranes, the biochemical counterpart of the plasma membrane Ca2+ pump (PMCA). High levels of membrane-bound FP and non-heme iron have been found in abnormal red cells such as sickle cells and malaria-infected red cells, associated with a reduced life span. It was important to establish whether sublytic concentrations of FP and non-heme iron would also inhibit the PMCA in normal red cells, to assess the possible role of these agents in the altered Ca2+ homeostasis of abnormal cells. Active Ca2+ extrusion by the plasma membrane Ca2+ pump was measured in intact red cells that had been briefly preloaded with Ca2+ by means of the ionophore A23187. The FP and nonheme iron concentrations used in this study were within the range of those applied to the isolated red cell membrane preparations. The results showed that FP caused a marginal inhibition (∼20%) of pump-mediated Ca2+ extrusion and that non-heme iron induced a slight stimulation of the Ca2+ efflux (11–20%), in contrast to the marked inhibitory effects on the Ca2+-Mg2+-ATPase of isolated membranes. Thus, FP and non-heme iron are unlikely to play a significant role in the altered Ca2+ homeostasis of abnormal red cells. Received: 22 November 1999/Revised: 29 February 2000  相似文献   

11.
Ionic currents in the plasmalemma of perfused Nitella syncarpa cells identified as currents through Ca2+ channels were registered for the first time. The effect of 1,4-dihydropyridine derivatives (nifedipine, nitredipine, riodipine) and phenylalkylamines (verapamil, D600) as well as the agonist CGP-28392 on the Ca2+ channels in the plasmelemma of perfused cells of Nitellopsis obtusa and Nitella syncarpa have been studied. A blocking effect of 1,4-dihydropyridine derivatives and phenylalkylamines on the plasmalemma Ca2+ channels has been detected. Phenylalkylamines have been found to block both inward and outward Ca2+ currents. The activating effect of the agonist CGP-28392 on the Ca2+ channels of plasmalemma has been shown.  相似文献   

12.
Ernesto Carafoli 《BBA》2010,1797(6-7):595-606
A number of findings in the 1950s had offered indirect indications that mitochondria could accumulate Ca2+. In 1961, the phenomenon was directly demonstrated using isolated mitochondria: the uptake process was driven by respiratory chain activity or by the hydrolysis of added ATP. It could be accompanied by the simultaneous uptake of inorganic phosphate, in which case precipitates of hydroxyapatite were formed in the matrix, buffering its free Ca2+ concentration. The properties of the uptake process were established in the 1960s and 1970s: the uptake of Ca2+ occurred electrophoretically on a carrier that has not yet been molecularly identified, and was released from mitochondria via a Na+/Ca2+ antiporter. A H+/Ca2+ release exchanger was also found to operate in some mitochondrial types. The permeability transition pore was later also found to mediate the efflux of Ca2+ from mitochondria. In the mitochondrial matrix two TCA cycle dehydrogenases and pyruvate dehydrogenase phosphate phosphatase were found to be regulated in the matrix by the cycling of Ca2+ across the inner membrane. In conditions of cytoplasmic Ca2+ overload mitochondria could store for a time large amounts of precipitated Ca2+-phosphate, thus permitting cells to survive situations of Ca2+ emergency. The uptake process was found to have very low affinity for Ca2+: since the bulk concentration of Ca2+ in the cytoplasm is in the low to mid-nM range, it became increasingly difficult to postulate a role of mitochondria in the regulation of cytoplsmic Ca2+. A number of findings had nevertheless shown that energy linked Ca2+ transport occurred efficiently in mitochondria of various tissues in situ. The paradox was only solved in the 1990s, when it was found that the concentration of Ca2+ in the cytoplasm is not uniform: perimitochondrial micropools are created by the agonist-promoted discharge of Ca2+ from vicinal stores in which the concentration of Ca2+ is high enough to activate the low affinity mitochondrial uniporter. Mitochondria thus regained center stage as important regulators of cytoplasmic Ca2+ (not only of their own internal Ca2+). Their Ca2+ uptake systems was found to react very rapidly to cytoplasmic Ca2+ demands, even in the 150-200 msec time scale of processes like the contraction and relaxation of heart. An important recent development in the area of mitochondrial Ca2+ transport is its involvement in the disease process. Ca2+ signaling defects are now gaining increasing importance in the pathogenesis of diseases, e.g., neurodegenerative diseases. Since mitochondria have now regained a central role in the regulation of cytoplasmic Ca2+, dysfunctions of their Ca2+ controlling systems have expectedly been found to be involved in the pathogenesis of numerous disease processes.  相似文献   

13.
Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca2+ signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca2+ is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca2+] ([Ca2+]i) triggered by IP3-induced release of Ca2+ from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca2+]i signal in the cell. However, Ca2+ entry into the cell is required to sustain the elevation of [Ca2+]i and fluid secretion. This Ca2+ influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca2+ entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca2+ signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca2+ signal can be ascribed to the polarized arrangement of the Ca2+ channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca2+ signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca2+ signals in the regulation of fluid secretion.  相似文献   

14.
The effect of Ca2+ on the adenine nucleotide translocase activity of intact rat liver mitochondria has been studied. The results indicate that in mitochondria which have been allowed to accumulate Ca2+, the activity of the translocase is strongly diminished; half-maximal inhibition is attained when approximately 40 nmol of Ca2+ are accumulated/mg of mitochondrial protein. Inhibition of electron transport or uncoupling prevents the Ca2+-induced inhibition of translocase activity; inhibition of Ca2+ uptake by ruthenium red also prevents the inhibition of the exchange. These experiments indicate that internal, but not external Ca2+ is responsible for the inhibition of adenine nucleotide translocase activity. Inhibition of the exchange activity by Ca2+ occurs even in conditions in which external adenine nucleotide concentrations are rate-limiting.  相似文献   

15.
A large number of plant Ca2+/H+ exchangers have been identified in endomembranes, but far fewer have been studied for Ca2+/H+ exchange in plasma membrane so far. To investigate the Ca2+/H+ exchange in plasma membrane here, inside-out plasma membrane vesicles were isolated from Arabidopsis thaliana leaves using aqueous two-phase partitioning method. Ca2+/H+ exchange in plasma membrane vesicles was measured by Ca2+-dependent dissipation of a pre-established pH gradient. The results showed that transport mediated by the Ca2+/H+ exchange was optimal at pH 7.0, and displayed transport specificity for Ca2+ with saturation kinetics at K m = 47 μM. Sulfate and vanadate inhibited pH gradient across vesicles and decreased the Ca2+-dependent transport of H+ out of vesicles significantly. When the electrical potential across plasma membrane was dissipated with valinomycin and potassium, the rate of Ca2+/H+ exchange increased comparing to control without valinomycin effect, suggesting that the Ca2+/H+ exchange generated a membrane potential (interior negative), i.e. that the stoichiometric ratio for the exchange is greater than 2H+:Ca2+. Eosin Y, a Ca2+-ATPase inhibitor, drastically inhibited Ca2+/H+ exchange in plasma membrane as it does for the purified Ca2+-ATPase in proteoliposomes, indicating that measured Ca2+/H+ exchange activity is mainly due to a plasma membrane Ca2+ pump. These suggest that calcium (Ca2+) is transported out of Arabidopsis cells mainly through a Ca2+-ATPase-mediated Ca2+/H+ exchange system that is driven by the proton-motive force from the plasma membrane H+-ATPase.  相似文献   

16.
The mechanisms of secretory transport through the Golgi apparatus remain an issue of debate. The precise functional importance of calcium ions (Ca2+) for intra-Golgi transport has also been poorly studied. Here, using different approaches to measure free Ca2+ concentrations in the cell cytosol ([Ca2+]cyt) and inside the lumen of the Golgi apparatus ([Ca2+]GA), we have revealed transient increases in [Ca2+]cyt during the late phase of intra-Golgi transport that are concomitant with a decline in the maximal [Ca2+]GA restoration ability. Thus, this redistribution of Ca2+ from the Golgi apparatus into the cytosol during the movement of cargo through the Golgi apparatus appears to have a role in intra-Golgi transport, and mainly in the late Ca2+-dependent phase of SNARE-regulated fusion of Golgi compartments.  相似文献   

17.
Published studies of the Ca2+-pump ATPase of the human erythrocyte membrane record a variety of patterns of activation by Ca2+ and calmodulin and also suggest that activation by Ca2+-calmodulin is slow rather than immediate. We have re-analysed these points in various types of human erythrocyte membrane preparation of widely different permeability characteristics, both in the intact state and after being rendered fully permeable by saponin. The various membrane preparations initially showed very different patterns of activation, but when permeabilised with saponin they all exhibited identical characteristics: these included highly cooperative activation by Ca2+ with maximum activity at ~ 1 μM-Ca2+ and high sensitivity to calmodulin. Activation of Ca2+-ATPase by Ca2+-calmodulin in freely permeable ghosts was immediate. We therefore conclude that the Ca2+-pump ATPase exhibits high sensitivity to Ca2+ and calmodulin and responds rapidly to Ca2+-calmodulin. Apparent evidence to the contrary seems likely to have been a result of misinter-pretation of data derived from studies of partially sealed erythrocyte ghosts in which the added activators, Ca2+ and calmodulin, did not have free access to the appropriate sites on the ATPase.  相似文献   

18.
Inositol lipid signaling relies on an InsP3-induced Ca2+ release from intracellular stores and on extracellular Ca2+ entry, which takes place when the Ca2+ stores become depleted of Ca2+. This interplay between Ca2+ release and Ca2+ entry has been termed capacitative Ca2+ entry and the inward current calcium release activated current (CRAC) to indicate gating of Ca2+ entry by Ca2+-store depletion. The signaling pathway and the gating mechanism of capacitative Ca2+ entry, however, are largely unknown and the molecular participants in this process have not been identified. In this article we review genetic, molecular, and functional studies of wild-type and mutantDrosophila photoreceptors, suggesting that thetransient receptor potential mutant (trp) is the first putative capacitative Ca2+ entry mutant. Furthermore, several lines of evidence suggest that thetrp gene product TRP is a candidate subunit of the plasma membrane channel that is activated by Ca2+ store depletion.  相似文献   

19.
The role of Ca2+ in the initiation and maintenance of contraction has been extensively studies. Many of these studies have focused on how Ca2+ influx and efflux affect cytoplasmic Ca2+ (Cai) and, therefore, contraction in cardiac muscle. However, it has recently become apparent that Cai itself may play a major role in the control of Ca2+ influx and efflux from cardiac muscle. Here we review current ideas on the mechanisms underlying Ca2+ homeostasis in cardiac muscle, with specific attention to how Cai may control Ca2+ influx, both under normal and pathological conditions.  相似文献   

20.
We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca2+ leak using synthetic Ca2+ indicators that report changes in both the cytoplasmic ([Ca2+]i) and the luminal ER ([Ca2+]ER) Ca2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca2+]ER but did not decrease the ER Ca2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP3R and only Orai3 channel supported the 2-APB-induced ER Ca2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca2+ leak but did not modify the ER Ca2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca2+]i response after TG but only when the ER store had been overloaded with Ca2+ by eliminating the acidic internal Ca2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca2+ leak but forms an ER Ca2+ leak channel that is limiting the overloading with Ca2+ of the ER store.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号