首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In both healthy controls and patients with Wiskott-Aldrich syndrome, the main oligosaccharide in asparagine-linked sugar chains of the membrane glycoproteins of erythrocytes was biantennary sugar chain with bisected G1cNAc (Gal2-GlcNAc2-Man3-GlcNAc-GlcNAc-Fuc-GlcNAcOT). Biantennary sugar chain with an-fucosyl residue linked at the proximal GlcNAc was seen but biantennary sugar chain without an-fucosyl residue at the proximal GlcNAc was not detected in each subject. There was no difference in quality and quantity of asparagine-linked sugar chains of erythrocyte membrane glycoproteins between healthy controls and the patients. These results suggest that asparagine-linked sugar chains in membrane glycoproteins of hematopoietic cells may not be impaired in Wiskott-Aldrich syndrome.  相似文献   

2.
The sugar chains of transferrin samples, purified from sera of patients with hepatocellular carcinoma and of healthy individuals, were released quantitatively as radioactive oligosaccharides by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Comparative study of their structure by serial lectin column chromatography, by Bio-Gel P-4 column chromatography, and by sequential exoglycosidase digestion revealed that prominently altered glycosylation is commonly found in the hepatoma transferrins, although they all contain two complex-type asparagine-linked sugar chains in one molecule like in the case of normal transferrins. The alteration is quite various, including the increase of highly branched sugar chains, of those with the Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----and the Neu5Ac alpha 2----3Gal beta 1----4GlcNAc beta 1----groups in their outer chain moieties and of those with a fucosylated trimannosyl core. Many but not all of the hepatoma transferrin samples contained a small amount of a bisected biantennary sugar chain, which was not detected in the normal transferrin samples.  相似文献   

3.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

4.
Guinea pig and mouse C1q, subcomponents of the first component of complement, contained six asparagine-linked sugar chains on the C-terminal non-collagenous globular regions of each molecule. After N-acetylation and successive NaB3H4-reduction of asparagine-linked sugar chains liberated by hydrazinolysis, their structure was analysed by sequential exoglycosidase digestion in combination with sugar composition analyses. The sugar chains of C1q molecules of both animals were very similar and composed of the biantennary complex type sugar chains with the following outer chains in various combinations: (± NeuNAcα → )Galß1 → GlcNAcß1 → and Galß1 → Galß1 → GlcNAcß1 →. These chain moieties were found to be linked to a common core structure of Manα1 → (Manα1 → )Manß1 → GlcNAcß1 → (Fucα1 → )GlcNAc.  相似文献   

5.
A Kobata 《Biochimie》1988,70(11):1575-1585
Altered glycosylation is widely observed in glycoproteins produced by tumors. One of the most consistently observed alterations is the increase of larger asparagine-linked sugar chains in the plasma membrane glycoproteins. This phenomenon is brought about by the increase of N-acetylglucosaminyltransferase V, which is responsible for the formation of the GlcNAc beta 1----6Man alpha-1----6 group. The enrichment of the complex-type sugar chains containing the -GlcNAc beta 1----6(-GlcNAc beta 1----2)Man alpha 1----6 group is correlated with tumorigenicity and metastasic potential of tumor cells. Comparative study of the sugar chains of human chorionic gonadotropin isolated from the urine of pregnant women and of patients with trophoblastic diseases including choriocarcinoma revealed that many new oligosaccharides are included in the tumor hCG. The altered glycosylation of hCG is brought about by the ectopic expression of N-acetylglucosaminyltransferase IV. With use of this altered glycosylation, a novel method useful for the diagnosis of choriocarcinoma was established.  相似文献   

6.
The transport of human-mouse hybrid class I histocompatibility antigens has been studied in a mutant human cell line, 174 × CEM.T2 (T2). T2, a somatic cell hybrid of human B- and T-lymphoblastoid cell lines (B-LCL and T-LCL, respectively), synthesizes HLA-A2 and HLA-B5 glycoproteins, but expresses only low levels of A2 and undetectable levels of B5 at the cell surface. We have previously shown that the products of human class I genes introduced into T2 by transfection behave like the endogenous HLA-B5 glycoproteins, while the products of mouse class I alleles similarly introduced are transported normally to the cell surface. We have now determined that the surface expression of class I glycoproteins in T2 depends on the origin of the 1 and 2 domains. Human (HLA-B7) and mouse (H-2D p ) hybrid class I genes, encoding the leader, 1, and 2 sequences of one species fused to the 3, transmembrane, and cytoplasmic domains of the other, were transfected into T2. Normal surface expression of the hybrid class I molecule was observed in T2 only when the leader, 1, and 2-encoding exons were derived from the mouse gene. The reciprocal construct, encoding human leader, 1, and 2 domains fused to the mouse 3, transmembrane, and cytoplasmic regions, resulted in biosynthesis of a hybrid glycoprotein which was not transported to the cell surface. The products of both constructs were expressed normally in control cells. The effects of glycosylation on class I antigen transport were also studied using mutant class I constructs with altered glycosylation sites. Two mutant B7 genes encoding either an extra glycosylation site at position 176 or no glycosylation sites were transfected into T2. These mutant products were expressed at the cell surface in control cells, but were synthesized and not surface-expressed in T2. These data demonstrate that the HLA/H-2 transport dichotomy in T2 is a function of the origin of the 1 and/or 2 domains of the class I glycoprotein, and is not a reflection of glycosylation differences between the human and mouse molecules. Offprint requests to: P. Cresswell.  相似文献   

7.
Leu-CAMs (CD11/CD18) consisting of LFA-1, Mac-1, and p150/95 are leukocyte cell surface glycoproteins that are involved in various leukocyte functions. The asparagine-linked sugar chains were released as oligosaccharides from Leu-CAMs by hydrazinolysis. About 12 mol of sugar chains was released from 1 mol of Leu-CAMs. These sugar chains were converted to radioactive oligosaccharides by reduction with sodium borotritide and separated into neutral and acidic fractions by paper electrophoresis. All of the acidic oligosaccharides were converted to neutral ones by digestion with sialidase, indicating that they are sialyl derivatives. The neutral and sialdase-treated acidic oligosaccharides were fractionated by chromatography on lectin columns followed by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exo- and endoglycosidase digestion and by methylation analysis revealed that Leu-CAMs contain mainly high mannose type and high molecular weight complex type sugar chains. The latter sugar chains were of bi-, tri-, and tetraantennary complex types with the Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----and/or the Gal beta 1----3GlcNAc beta 1----groups together with the Gal beta 1----4GlcNAc group in their outer-chain moieties. In addition to these sugar chains, a small amount of monoantennary complex type and hybrid type sugar chains was found in Leu-CAMs. Furthermore, analysis of the asparagine-linked sugar chains released from the beta-subunit of Leu-CAMs by a series of lectin chromatography showed that subunit-specific glycosylation is not observed between the alpha- and beta-subunits of Leu-CAMs.  相似文献   

8.
A journey to the world of glycobiology   总被引:7,自引:0,他引:7  
Finding of the deletion phenomenon of certain oligosaccharides in human milk and its correlation to the blood types of the donors opened a way to elucidate the biochemical basis of blood types in man. This success led to the idea of establishing reliable techniques to elucidate the structures and functions of the N-linked sugar chains of glycoproteins. N-Linked sugar chains were first released quantitatively as oligosaccharides by enzymatic and chemical means, and labelled by reduction with NaB3H4. After fractionation, structures of the radioactive oligosaccharides were determined by a series of methods developed for the studies of milk oligosaccharides. By using such techniques, structural rules hidden in the N-linked sugar chains, and organ- and species-specific N-glycosylation of glycoproteins, which afforded a firm basis to the development of glycobiology, were elucidated. Finding of galactose deficiency in the N-linked sugar chains of serum lgG from patients with rheumatoid arthritis, and malignant alteration of N-glycosylation in various tumors opened a new research world called glycopathology.However, recent studies revealed that several structural exceptions occur in the sugar chains of particular glycoproteins. Finding of the occurrence of the Gal1-4Fuc1- group linked at the C-6 position of the proximal N-acetylglucosamine residue of the hybrid type sugar chains of octopus rhodopsin is one of such examples. This finding indicated that the fucosyl residue of the fucosylated trimannosyl core should no more be considered as a stop signal as has long been believed. Furthermore, recent studies on dystroglycan revealed that the sugar chains, which do not fall into the current classification of N- and O-linked sugar chains, are essential for the expression of the functional role of this glycoprotein.It was found that expression of many glycoproteins is altered by aging. Among the alterations of the glycoprotein patterns found in the brain nervous system, the most prominent evidence was found in P0. This protein is produced in non-glycosylated form in the spinal cord of young mammals. However, it starts to be N-glycosylated in the spinal cord of aged animals.These evidences indicate that various unusual sugar chains occur as minor components in mammals, and play important roles in particular tissues.  相似文献   

9.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

10.
Six monoclonal antibodies, three each of human IgG1 and IgG2 subclasses, were obtained from human-mouse hybridomas. Structural study of their asparagine-linked sugar chains was performed to elucidate the regulatory mechanism of secreted monoclonal IgG glycosylation. The sugar moieties were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by NaB3H4 reduction after N-acetylation. Structural study of each oligosaccharide by lectin affinity column chromatography, sequential exoglycosidase digestion, and methylation analysis indicated that almost all of them were biantennary complex-type sugar chains containing Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)GlcNAc as core structures. Bisecting N-acetylglucosamine residue, which is present in human IgG but not in mouse IgG, could not be detected at all. The molar ratio of each oligosaccharide from the six IgG samples was different. However, no subclass specificity was detected except that all IgG1 contained neutral, mono-, and disialylated sugar chains, whereas IgG2 did not contain disialylated ones. The molar ratio of N-acetylneuraminic acid to N-glycolylneuraminic acid was also different for each IgG. All six IgGs contained monoantennary complex-type and high mannose-type oligosaccharides which had never been detected in serum IgGs of various mammals so far investigated. These results indicated that the processing of asparagine-linked sugar chains of IgG is less complete in human-mouse hybridoma than in human or mouse B cells, and that the glycosylation machinery of the mouse cells is dominant in the hybrid cells.  相似文献   

11.
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man1-6(±GlcNAc1-4)(Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.Abbreviations IgG, IgM, IgD, IgE, and IgA immunoglobulin G, M, D, E, and A, respectively - IgY egg-yolk antibody - ABEE p-aminobenzoic acid ethyl ester - HPLC high performance liquid chromatography - FAB-MS fast atom bombardment mass spectrometry - Hex hexose - HexNAc N-acetylhexosamine - hCG human chorionic gonadotropsin  相似文献   

12.
Various O-linked and N-linked sugar chains were linked enzymatically to a fragment peptide (Leu-Ser-Gln(or Asn)-Val-His-Arg) of FGF-5S. First, galactose was linked with -(13)-linkage to GalNAc-linked peptide by a transglycosylation using -galactosidase from Bacillus circulans (recombinant). Then sialic acid was linked with the aid of sialyltransferase from rat liver (recombinant) to give NeuAc-(23)-Gal-(13)-GalNAc-linked hexapeptide. Further, a sialylated 2-chain biantennary sugar chain was linked by a transglycosylation using endo N-acetyl--D-glucosaminidase from Mucor hiemalis (endo M, recombinant). The activity of DNA synthesis in a fibroblast cell line was increased by this glycosylation. The resistance of the obtained glycopeptides towards proteolytic hydrolysis by rat serum and by five proteases was compared with that of original peptide. The resistance was remarkably enhanced by the glycosylation.  相似文献   

13.
Hamster sarcoma virus (HSV) transformation of Nil-8 fibroblasts is associated with an increase in the average size of N-acetyllactosamine (complex) type N-linked glycans due to an increase in both the average number of branches/chain and in the fraction of N-linked glycans containing poly(GlcNAc(beta 1,3) Gal-(beta 1,4)) (polylactosaminylglycan) chains. Analysis of glycopeptides from the envelope glycoproteins of Sindbis virus and vesicular stomatitis virus (VSV) grown in Nil-8 and Nil/HSV cells indicated that the transformation-associated shift to larger N-linked oligosaccharides selectively affects some glycosylation sites far more than others. Glycosylation of the Sindbis virus glycoproteins and of Asn-179 of VSV G was similar in Nil-8 and Nil/HSV cells; oligosaccharide processing generally did not proceed beyond the biantennary complex stage. In contrast, Asn-336 of VSV G carried primarily biantennary complex glycans in Nil-8-grown virus (ratio, triantennary, and larger to biantennary complex glycans (tri+/bi) = 0.5) but more highly branched structures in Nil/HSV-grown virus (tri+/bi = 8.1). All of the triantennary or larger oligosaccharides from Asn-336 of Nil/HSV-grown VSV G bound to leukoagglutinating phytohemagglutinin-agarose, indicating the presence of a branch attached to the Man3GlcNAc2 core via a beta 1,6-linked GlcNAc residue and suggesting that increased UDP-GlcNAc:alpha-D-mannoside beta 1,6-N-acetylglucosaminyl transferase V (GlcNAc transferase V) activity accompanied transformation. At least 20% of these leukoagglutinating phytohemagglutinin-binding oligosaccharides were sensitive to an enzyme specific for polylactosaminylglycan chains, Escherichia freundii endo-beta-galactosidase.  相似文献   

14.
A soluble -3/4-fucosyltransferase secreted into the growth medium of the human A431 epidermoid carcinoma cell line has been purified 700 000 fold by a series of steps involving chromatography on Phenyl Sepharose 4B, CM-Sephadex C-50 and GDP-hexanolamine Sepharose 4B. The untreated spent culture medium transferred almost ten times more fucose to the subterminalN-acetylglicosamine residue in the Type 1 (Gal 1-3GlcNAc) disaccharide than to the subterminal sugar in the Type 2 (Gal 1-4GlcNAc) disaccharide; the relative activity with these two substrates remained virtually unchanged throughout the purification procedure. At no stage was any -3-fucosyltransferase species acting solely onN-acetylglucosamine residues in Type 2 chains separated from the bulk of the -3/4-fucosyltransferase activity. The purified enzyme preparation showed insignificant activity with glycoprotein substrates having N-linked oligosaccharide chains with terminal Type 2 sequences but transferred fucose to a mucin-type glycoprotein with O-linked oligosaccharide chains with terminal Type 1 structures. Lactose was a poor substrate but the activity of the enzyme was influenced by the presence of substituents on the terminal -galactosyl residue and 2-fucosyllactose was almost as good an acceptor as the Type 1 disaccharide. The properties of the purified enzyme with regard to specificity, divalent cation requirements, pH optimum, andM r, closely resembled those of the Lewis-blood-group gene associated -3/4-fucosyltransferase isolated from human milk.Deceased June 1991.  相似文献   

15.
Values ofK m were determined for three purified sialyltransferases and the corresponding recombinant enzymes. The enzymes were Gal1-4GlcNAc 2-6sialyltransferase and Gal1-3(4)GlcNAc 2-3sialyltransferase from rat liver; these enzymes are responsible for the attachment of sialic acid to N-linked oligosaccharide chains; and the Gal1-3GalNAc 2-3sialyltransferase from porcine submaxillary gland that is responsible for the attachment of sialic acid to O-linked glycoproteins and glycolipids. A procedure for the large scale expression of active sialyltransferases from recombinant baculovirus-infected insect cells is described. For the liver enzymes values ofK m were determined using rat and human asialo1 acid glycoprotein andN-acetyllactosamine as variable substrates; lacto-N-tetraose was also used with the Gal1-3(4)GlcNAc 2-3sialyltransferase. Antifreeze glycorprotein was used as the macromolecular acceptor for the porcine enzyme. Values forK m were also determined using CMP-NeuAc as the variable substrate.Abbreviations NeuAc N-acetylneuraminic acid - Gal galactose - GlcNAc N-acetylglucosamine Enzymes: Gal1-4GlcNAc 2-6sialyltransferase, EC 2.4.99.1; Gal1-3(4)GlcNAc 2-3sialyltransferase, EC 2.4.99.5; Gal1-3GalNAc 2-3sialyltransferase, EC 2.4.99.4.  相似文献   

16.
A member of the family of 2-microglobulin (2m)-associated cell surface glycoproteins was identified by the CB3 monoclonal antibody. The Mr 50 000 heavy chain of the CB3 antigen differs from conventional class I heavy chains (Mr 45 000) in the extent of glycosylation, charge, and peptide composition. Because of its selective expression on avian B cells and its similarity to mammalian class I-like molecules, we speculate that the CB3 antigen may play a role in T- and B-cell interactions. rommental stimuli is to prepare monoclonal antibodies against bursal cell surface antigens. Using this strategy we have identified several proteins that are expressed on the surface of bursal B cells (Chen and Cooper 1987). In the present study we characterize CB3, a class I-like molecule associated with 2-microglobulin (2m) on the surface of both bursal and peripheral B cells.  相似文献   

17.
Structural changes in the asparagine-linked sugar chains of plasma membrane glycoproteins during myeloid and monocytoid differentiation were investigated by the use of an in vitro differentiation system for human promyelocytic leukemic cells (HL-60), which can be induced to more mature myeloid cells by exposure to dimethyl sulfoxide and to macrophage-like cells by a phorbol ester. The asparagine-linked sugar chains released from their plasma membranes by hydrazinolysis were separated into a neutral fraction and an acidic fraction composed of over ten components. The content of neutral oligosaccharides, which accounted for 8% of the total asparagine-linked sugar chains in HL-60 cells, increased slightly to 13% in dimethyl sulfoxide-induced cells and markedly to 33% in phorbol ester-induced cells. Structural analyses revealed that the neutral oligosaccharides of HL-60 cells are all of the complex type with a variety of Gal beta 1----4GlcNAc beta 1----units in their outer chain moieties and the following core structure: (sequence; see text) After myeloid and monocytoid differentiation, the total amount of neutral complex-type sugar chains did not change significantly, but newly found high mannose-type sugar chains contributed up to 3% and 24% of the total sugar chains, respectively.  相似文献   

18.
The glycosylations of five different rat submandibular kallikreins, rK1, rK2, rK7, rK9 and rK10, vacuum-blotted onto nitrocellulose membranes, have been studied by means of labelled lectins using enhanced chemiluminescence detection. The results demonstrated that individual submandibular kallikreins are not heavily glycosylated in rats, but consistently show different patterns of glycosylation. Following digestion of slot-blotted enzymes with peptide-N-glycosidase F (PNGase): binding by lectin fromLens culinaris (Man-directed) was abolished, whilst that of lectin fromMaclura pomifera (Gal1,3GalNAc-directed) persisted (but could be abolished by periodate oxidation and endo--N-acetylgalactosaminidase digestion), revealing that there are O- as well as N-linked sugar chains on the kallikreins; a novel observation for this family of enzymes. The presence of GalNAc in addition to GlcNAc, Fuc, Gal and Man, in sugar chains of rK1 was confirmed by high pH anion exchange chromatography following acid hydrolysis. Different intensities of binding by lectin fromLimax flavus (NeuNAc-directed) suggest that sialylation of individual kallikreins differs, whilst sialidase and PNGase digestions suggest that sialic acid is the terminal residue of some N-linked but not O-linked structures.  相似文献   

19.
Hyaluronidase from the venom of the honeybee (Apis mellifera) has been purified by gelpermeation and cation exchange chromatography. Its asparagine-linked carbohydrate chains were released from tryptic glycopeptides with N-glycosidase A and reductively aminated with 2-aminopyridine. Separation of the fluorescent derivatives by size-fractionation and reversed-phase HPLC afforded eighteen fractions which were analysed by two-dimensional HPLC mapping combined with exoglycosidase digestions. The bulk of the N-linked glycans of hyaluronidase consisted of small oligosaccharides (Man1–3GlcNAc2), most of which were either 1,3-monofucosylated or 1,3-(1,6-)difucosylated at the innermost GlcNAc residue. High-mannose type structures constituted the minor fractions, together making up about 5% of the oligosaccharide pool from hyaluronidase. Four fractions, making up 8% of the N-linked glycans, contained the terminal trisaccharide GalNAc1-4[Fuc1-3]GlcNAc1- in 1,2-linkage to the core 1,3-mannosyl residue. No evidence for the presence of O-glycans or sialic acids could be found.Abbreviations GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - PA pyridylamino - PLA phospholipase A2 - 2D-HPLC two-dimensional HPLC  相似文献   

20.
Sixteen asparagine-linked oligosaccharides ranging in size from (Man)2(GlcNAc)2 (Fuc)1 to (GlcNAc)6(Man)3(GlcNAc)2 were obtained from human 1-acid glycoprotein and fibrinogen, hen ovomucoid and ovalbumin, and bovine fetuin, fibrin and thyroglobulin by hydrazinolysis, mild acid hydrolysis and glycosidase treatment. The oligosaccharides hadN-acetylglucosamine at the reducing termini and mannose andN-acetylglucosamine residues at the non-reducing termini and were prepared for use asN-acetylglucosaminyltransferase substrates. Purification of the oligosaccharides involved gel filtration and high performance liquid chromatography on reverse phase and amine-bonded silica columns. Structures were determined by 360 MHz and 500 MHz proton nuclear magnetic resonance spectroscopy, fast atom bombardment-mass spectrometry and methylation analysis. Several of these oligosaccharides have not previously been well characterized.Abbreviations bis bisecting GlcNAc - DMSO dimethylsulfoxide - FAB fast atom bombardment - Fuc l-fucose - Gal d-galactose - GLC gas-liquid chromatography - GlcNAc or Gn N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man or M d-mannose - MES 2-(N-morpholino)ethanesulfonate - MS mass spectrometry - NMR nuclear magnetic resonance - PIPES piperazine-N,N-bis(2-ethane sulfonic acid) the nomenclature of the oligosaccharides is shown in Table 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号