共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of mitotic spindle disturbances and activation of the apoptosis pathway in V79 Chinese hamster cells by continuous 2.45 GHz microwaves exposure were studied, in order to investigate possible non-thermal cell damage. We demonstrated that microwave (MW) exposure at the water resonance frequency was able to induce alteration of the mitotic apparatus and apoptosis as a function of the applied power densities (5 and 10mW/cm(2)), together with a moderate reduction in the rate of cell division. After an exposure time of 15 min the proportion of aberrant spindles and of apoptotic cells was significantly increased, while the mitotic index decreased as well, as compared to the untreated V79 cells. Additionally, in order to understand if the observed effects were due to RF exposure per se or to a thermal effect, V79 cells were also treated in thermostatic bath mimicking the same temperature increase recorded during microwave emission. The effect of temperature on the correct assembly of mitotic spindles was negligible up to 41°C, while apoptosis was induced only when the medium temperature achieved 40°C, thus exceeding the maximum value registered during MW exposure. We hypothesise that short-time MW exposures at the water resonance frequency cause, in V79 cells, reversible alterations of the mitotic spindle, this representing, in turn, a pro-apoptotic signal for the cell line. 相似文献
2.
3.
4.
5.
Henry M. Vyner 《Culture, medicine and psychiatry》1983,7(3):241-261
This paper presents a case study of eleven men who were exposed to non-background ionizing radiation as active participants in the United States' atmospheric nuclear tests. Each of the subjects has developed a virtually identical complex of debilitating psychiatric symptoms. The content of these symptoms is almost entirely focused upon the health effects of the radiation to which each of the subjects was exposed. This symptom complex appears to comprise a syndrome. The symptom structure and course of this syndrome suggests three hypotheses: The syndrome appears to be a pathological development of the self diagnostic belief (that one has been physically harmed by radiation) into a set of symptoms that elaborate upon and express this belief. The self diagnostic belief develops as a means of resolving any one of the various medical mysteries that an individual can experience subsequent to exposure to radiation. Development of the syndrome is a consequence of exposure to non-background ionizing radiation. The paper discusses the evidence for these hypotheses and suggests future research directions. 相似文献
6.
Inhibition of mammalian cell DNA synthesis by ionizing radiation 总被引:4,自引:0,他引:4
R B Painter 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1986,49(5):771-781
A semi-log plot of the inhibitory effect of ionizing radiation on the rate of DNA synthesis in normal mammalian cells yields a two-component curve. The steep component, at low doses, has a D0 of about 5 Gy and is the result of blocks to initiation of DNA replicons. The shallow component, at high doses, has a D0 of greater than or equal to 100 Gy and is the result of blocks to DNA chain elongation. The target size for the inhibition of DNA replicon initiation is about 1000 kb, and the target size for inhibition of DNA chain elongation is about 50 kb. There is evidence that the target for both components is DNA alone. Therefore, the target size for inhibition of DNA chain elongation is consistent with the idea that an effective radiation-induced lesion in front of the DNA growing point somehow blocks its advance. The target size for inhibition of DNA replicon initiation is so large that it must include many replicons, which is consistent with the concept that a single lesion anywhere within a large group (cluster) of replicons is sufficient to block the initiation of replication of all replicons within that cluster. Studies with radiosensitive human cell mutants suggest that there is an intermediary factor whose normal function is necessary for radiation-induced lesions to cause the inhibition of replicon initiation in clusters and to block chain elongation; this factor is not related to poly(ADP-ribose) synthesis. Studies with radiosensitive Chinese hamster cell mutants suggest that double-strand breaks and their repair are important in regulating the duration of radiation-induced inhibition of replicon initiation but have little to do with effects on chain elongation. There is no simple correlation between inhibition of DNA synthesis and cell killing by ionizing radiation. 相似文献
7.
8.
Barker S Weinfeld M Zheng J Li L Murray D 《The Journal of biological chemistry》2005,280(40):33826-33838
9.
Membrane effects of ionizing radiation and hyperthermia 总被引:2,自引:0,他引:2
W Leyko G Bartosz 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1986,49(5):743-770
Results of numerous studies demonstrate that membranes are important sites of cell damage by both ionizing radiation and hyperthermia. Modification of membrane properties (mainly lipid fluidity) affects the cellular responses to radiation and hyperthermia but former concepts that membrane rigidification sensitizes cells to radiation while membrane fluidization potentiates hyperthermic damage have now been seriously challenged. It seems that the effects of membrane fluidity on cell responses to hyperthermia and radiation are due to an indirect influence on functional membrane proteins. The major role of lipid peroxidation in radiation damage to membranes has also been questioned. The existing evidence makes it unlikely that the interaction between radiation and hyperthermia is determined by the action of both agents on the same membrane components. 相似文献
10.
11.
Akushevich I Manton KG Kulminski A Kovtun M Kravchenko J Yashin A 《Radiatsionnaia biologiia, radioecologiia / Rossi?skaia akademiia nauk》2006,46(6):663-674
In this paper we review recently-developed extension frailty, quadratic hazard, stochastic process, microsimulation, and linear latent structure models, which have the potential to describe the health effects of human populations exposed to ionizing radiation. We discuss the most common situations for which such models are appropriate. We also provide examples of how to estimate the parameters of these models from datasets of various designs. Carcinogenesis models are reviewed in context of application to epidemiologic data of population exposed to ionizing radiation. We also discuss the ways of how to generalize stochastic process and correlated frailty models for longitudinal and family analyses in radiation epidemiology. 相似文献
12.
13.
Non-targeted bystander effects induced by ionizing radiation 总被引:1,自引:0,他引:1
Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said "well what are the critical questions that should be addressed, and so what?", we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure. 相似文献
14.
Aneuploidy is among the most serious impairments of hereditary material in somatic and germline cells of living organisms. Chromosome loss or the appearance of an extra homolog in the chromosome set can result in either cell death or the development of various neoplasms with high probability of malignancy. It was traditionally believed that ionizing radiation produces primarily a clastogenic effect. However, there is apparently an aneugenic component of radiation, with mechanism different from that of structural chromosome damage. The present review focuses on the evidence for the existence of the aneugenic effect of ionizing radiation in mammalian and human somatic cells. 相似文献
15.
Mitra Azadniv Morton W. Miller Christopher Cox Fredrick Valentine 《Radiation and environmental biophysics》1993,32(1):73-83
Data on 60-Hz electric field (EF) induced reduction in growth rate of plant roots have strongly supported the hypothesis that the effect is related to an EF-induced transmembrane potential (V
i
m). An investigation was undertaken to determine if this hypothesis is also applicable to 60-Hz EF-induced reductions in growth rate of mammalian cells in vitro. Human lymphoblastic (RPMI 1788) and human carcinoma (HeLa) cells were selected for study, the former having a relatively small diameter (11.2 m), and the latter having a relatively large diameter (15.4 tm). The 60-Hz EFs ranged from 430–1200 V/m in the culture medium. The growth rate of RPMI 1788 cells after 4-days was depressed by about 42% at a 60-Hz EF of 1000–1200 V/m with a response threshold occurring at 950 V/m; theV
i
m at the response threshold was 8 mV There was no 60-Hz EF-induced effect on HeLa cell growth rate of aV
i
m of 8 mV (60-Hz EF=700 V/m); a statistically significant effect was achieved atV
i
m of 11 mV (950 V/m). The data support the hypothesis that above a threshold 60-Hz EF,V
i
m acts as the initial signal leading to growth rate reductions. 相似文献
16.
17.
Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1–12 Gy of gamma rays, eelB’s cell survival curve displayed a linear–quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D o, and D q values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells. 相似文献
18.
Jurate Savickiene Grazina Treigyte Ceslava Aleksandraviciene Ruta Navakauskiene 《Central European Journal of Biology》2010,5(5):600-612
The biological effects of low-dose radiation have attracted attention, but data are currently insufficient to fully understand the beneficial role of the phenomenon. In the present study, we have investigated the effects of low doses of gamma-irradiation alone and in combination with all-trans-retinoic acid (RA) on proliferation, apoptosis and differentiation of the human promyelocytic leukemia HL-60 cells. Changes in cell behavior and protein expression were determined with the use of light and fluorescent microscopy, immunocytochemical and Western blot analysis. Low-dose irradiation with 1–100 cGy caused a dose-dependent inhibition of HL-60 cell proliferation, and induced apoptosis and differentiation to granulocytes with an increase in the number of CD15-positive cells. Pre-irradiation with 1–100 cGy for 24 h before treatment with RA promoted apoptosis but did not impair RA-induced differentiation. Both processes were associated with a decrease in the expression of the proliferating cell nuclear antigen (PCNA), BCL-2, c-MYC, and changes in both cytosolic and nuclear levels of protein tyrosine-phosphorylation as well as protein kinase C alpha or beta isoforms. These results demonstrate the beneficial role of low-dose irradiation in modulating leukemia cell proliferation, differentiation and apoptosis. 相似文献
19.
Kolomiĭtseva IK Kulagina TP Markevich LN Potekhina NI Slozhenikina LV Fialkovskaia LA 《Biofizika》2002,47(6):1106-1115
Changes in the activity of ornithindecarboxylase in various tissues and in the amount of catecholamine in rat hypothalamus by the action of acute and chronic ionizing radiation were studied. A nonmonotonous relationship between the metabolic parameters of animal tissues and cells and the radiation dose was revealed. It was assumed that the nonmonotonous character of the dose-response dependence results from the nonmonotonous time course of the metabolic response to irradiation. It was also assumed that living systems have the property of responding to stress agents by nonmonotonous changes in metabolism. In the case of acute irradiation, this response manifests itself as oscillations of metabolic parameters about the control. The oscillations occur with a particular amplitude and periods, which vary with radiation dose, and damp out with time. As a result, in a fixed time interval, the dose-response curve may be nonmonotonous. Reverse dose-response relationships are also possible. In the case of chronic irradiation, the metabolic and functional parameters oscillate throughout irradiation time, and a modification of the response occurs. A prolong exposure to ionizing radiation causes strong changes in the metabolism of lipids of cell membranes, organelles and chromatin, as well as in the functional properties of some mammalian cells and tissues. The necessity of constructing quantitative models for explaining the nonmonotonous dose-response dependence is discussed. 相似文献
20.
Haus E 《Chronobiology international》2002,19(1):77-100
Ionizing radiation from all sources under appropriate conditions leads to cell death and tissue damage. It is used in cancer treatment under the assumption of a higher radiosensitivity of the fast dividing tumor cells as compared with adjacent host tissues. The radiosensitivities of proliferating host tissues like bone marrow and gastrointestinal lining epithelium are dose limiting. Since these host tissues and many tumors show circadian and other periodicities in their cell proliferation, the timing of radiation treatment according to host and/or tumor rhythms is expected to improve the toxic/therapeutic ratio of the treatment. The experimental data on the chronobiology of radiation exposure show circadian rhythmicity in radiation response after whole body irradiation in mice and rats with highest toxicity in light-dark 12h:12h synchronized animals during their daily activity span. Bone marrow toxicity as well as gastrointestinal epithelial damage show circadian rhythms in part due to radiation damage to the stem cells involved and especially in the intestine also due to damage to the microvasculature. Chronoradiotherapy of malignant tumors seems promising, alone or in combination with response modifiers, provided the host and potential tumor rhythms can be monitored. 相似文献