首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of the initial enzymes of the pentose phosphate pathway, namely glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase, has been demonstrated in dormant seed of wild oat. Before a partial characterization of these enzymes was made, an inherent NADP-reducing activity and an enzyme deactivating component, both present in the crude extract, were removed by ammonium sulphate precipitation and subsequent desalting. Both enzymes were then shown to be NADP-specific. Typical Michaelis-Menten kinetics were shown by each enzyme towards NADP and their respective substrates. Soluble cytoplasmic dehydrogenase enzymes were present in both embryo and endosperm extracts.  相似文献   

2.
Screening of 1315 males from two Egyptian oases for glucose-6-phosphate dehydrogenase deficiency (G-6PD) found an incidence of 5.9%. The rate of acetylation of sulfadimidin was also studied, and a bimodal distribution was found with 73% rapid acetylators. There is a correlation between high frequency of G-6PD deficiency and high frequency of slow acetylation rate. This work was supported by a grant from the International Center of Agricultural Research in the Dry Areas (ICARDA), Nile Valley project of faba beans.  相似文献   

3.
We studied the maternal effect for two enzymes of the pentose cycle, 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD), using a genetic system based on the interaction of Pgd? and Zw? alleles, which inactivate 6PGD and G6PD, respectively. The presence and formation of the enzymes was investigated in those individuals that had not received the corresponding genes from the mother. We revealed maternal forms of the enzymes, detectable up to the pupal stage. The activities of “maternal” 6PGD and G6PD per individual increased 20-fold to 30-fold from the egg stage to the 3rd larval instar even in the absence of normal Pgd and Zw genes. Immunologic studies have shown that the increase in 6PGD activity is due to an accumulation of the maternal form of the enzyme molecules. We revealed a hybrid isozyme resulting from an aggregation of the subunits of isozymes controlled by the genes of the mother and embryo itself. These results indicate that the maternal effect in the case of 6PGD is due to a long-lived stable mRNA transmitted with the egg cytoplasm and translated during the development of Drosophila melanogaster.  相似文献   

4.
A new variant of the red cell enzyme glucose-6-phosphate dehydrogenase has been detected in a South African male of Indian descent and in several of his relatives. The enzyme variant is characterized by slow electrophoretic mobility, low Michaelis constants for the substrates glucose-6-phosphate and NADP, and increased utilization of the substrate analogues 2-deoxyglucose-6-phosphate and deamino-NADP relative to the normal (B+) enzyme. There is no evidence that the enzyme variant, for which the name G6PD Porbandar is suggested, is associated with any hematological abnormality.The Atomic Energy Board and the South African Medical Research Council provided support for part of this work.  相似文献   

5.
Summary Previous studies examining regulation of synthesis of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase in rat liver have focussed on the induction of these enzymes by different diets and some hormones. However, the precise mechanism regulating increases in the activities of these enzymes is unknown and the factors involved remain unidentified. Considering that many of these metabolic conditions occur simultaneously with the increase of some NADPH consuming pathway, in particular fatty acid synthesis, we suggest that the activities of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase could be regulated through a mechanism involving changes in the NADPH requirement. Here, we have studied the effect of changes in the flux through different NADPH consuming pathways on the NADPH/NADP ratio and on Glucose-6-Phosphate and 6-Phosphogluconate levels. The results show that: i) an increase in consumption of NADPH, caused by activation of fatty acid synthesis or the detoxification system which consumes NADPH, is paralleled by an increase in levels of these enzymes; ii) when increase in consumption of NADPH is prevented, Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - ME Malic Enzyme - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide - t-BHP t-Butyl hydroperoxide - BCNU 1,3,-Bis (2-chloroethyl)-1-nitrosourea - GR Glutathione Dehydrogenase - 2-ME 2-Mercaptoethanol - DTT Dithiothreitol - NADP B-Nicotinamide-Adenine Dinucleotide Phosphate - NADPH B-Nicotinamide-Adenine Dinucleotide Phosphate Reduced - EDTA Ethylenediaminetetraacetic Acid - GSH Glutathione Reduced Form - GSSG Glutathione Oxidized Form  相似文献   

6.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency was identified in two children who were studied because of hemolytic episodes. The electrophoretic and kinetic properties of the mutant enzymes allowed us to conclude that both of them were new variants. They were named G6PD Guantánamo and G6PD Caujerí.  相似文献   

7.
  1. Download : Download high-res image (126KB)
  2. Download : Download full-size image
  相似文献   

8.
NADP reduction was shown to occur in a crude cytosolic extract from the cotyledonary material of hazel seed prior to the addition of erogenous dehydrogenase substrate. This activity interfered with the assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities. The inherent NADP reduction was removed by ammonium sulphate fractionation. Subsequent de-salting of the resulting partially-purified fraction permitted assay of G6PDH and 6PGDH. Both enzymes were shown to be NADP specific. Typical Michaelis-Menten kinetics were shown for each enzyme, towards NADP and their respective substrate.  相似文献   

9.
Abstract The specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase changed when Penicillium chrysogenum was grown on different carbon sources. In the presence of 2% lactose, the activities of these enzymes were approximately 25–35% lower than those in media containing 2% glucose or 2% fructose. We assume that an increase in cAMP concentration was responsible for the observed decreases in the enzyme activities, because a higher cAMP concentration could be detected when the mycelium was grown in a medium containing solely lactose as carbon source. The likely role played by cAMP in the regulation was also demonstrated by the addition of either cAMP or caffeine to the medium.  相似文献   

10.
水稻质体葡萄糖-6-磷酸脱氢酶基因的克隆与表达研究   总被引:1,自引:0,他引:1  
戊糖磷酸途径是高等植物中重要的代谢途径,主要生理功能是产生NADPH以及供核酸代谢的磷酸戊糖。葡萄糖-6-磷酸脱氢酶(G6PDH)是戊糖磷酸途径的关键酶,广泛存在于高等植物细胞的细胞质和质体中。木研究首次从水稻(Oryza sativa L.)幼苗中分离了核编码的质体G6PDH基因OsG6PDH2,序列分析表明OsG6PDH2编码一个具有588个氨基酸残基的多肽,等电点为8.5,分子量66kDa。OsG6PDH2的N端有1个70个氨基酸的信号肽,推测的裂解位点为Gly55和Val56,表明OsG6PDH2编码产物可能定位于质体。多序列比较的结果表明OsG6PDH2与拟南芥、烟草、马铃薯质体G6PDH的一致性分别达81%、87%、83%。进化关系说明水稻OsG6PDH2与拟南芥(AtG6PDH3)、马铃薯(StG6PDH1)处于高等植物P2型质体G6PDH分支上,暗示了OsG6PDH2可能是一个P2型的质体蛋白。Matinspector程序分析表明,OsG6PDH2在起始密码子上游含有一个bZIP转录因子识别位点、一个ABA应答元件、一个CRT/DRE元件和1个W-box元件。半定量RT-PCR分析表明,OsG6PDH2在水稻根、茎、叶和幼穗组织中都呈低丰度组成型表达,在根部表达较高,在水稻幼苗中的表达显著受暗处理的诱导。将OsG6PDH2的完整开放阅读框构建到大肠杆菌表达载体pET30a(+)中,pET30a(+)-OsG6PDH2在大肠杆菌中得到了有效表达。酶活性测定证明,OsG6PDH2的编码产物具有葡萄糖-6-磷酸脱氢酶的功能。  相似文献   

11.
SYNOPSIS. The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate. G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15–25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5, and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25–35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15–25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25–35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities.  相似文献   

12.
葡糖-6-磷酸脱氢酶(G6PD)在许多肿瘤细胞中高表达,但其发生的作用机理目前仍然不明确.以正常人表皮黑色素细胞(HEM)、野生型人黑色素瘤A375细胞(A375-WT)和G6PD缺陷的A375细胞(A375-G6PDΔ)为对象,经real-time PCR、Western印迹和紫外分光光度法分析显示,A375-WT细胞的mRNA、G6PD蛋白和G6PD活性分别是HEM细胞的1.89倍(P0.05)、6.86倍(P0.01)和2.30倍(P0.05).Annexin V/PI流式细胞仪和Western印迹测定表明,A375-G6PDΔ的凋亡率是A375-WT的5.10倍(P0.01),活化半胱氨酸蛋白酶3(caspase-3)增高1.84倍(P0.01)以及89 kD多聚二磷酸腺苷核糖聚合酶-1(PARP-1)生成增加2.87倍(P0.01).分光光度法分析显示,A375-G6PDΔ的NADPH和GSH分别降低了72.30%(P0.01)和27.39%(P0.05),并伴有75.43%的H2O2增高(P0.01).结果提示,G6PD在黑色素瘤细胞中高表达和高活性,而敲减G6PD表达通过caspase-3和PARP-1信号诱发人黑色素瘤细胞凋亡,这为深入揭示黑色素瘤的发生机理提供了新思路。  相似文献   

13.
Glucose-6-phosphate dehydrogenase is a rate-limiting enzyme of pentose phosphate pathway, existing in cytosolic and plastidic compartments of higher plants. A novel gene encoding plastidic glucose-6-phosphate dehydrogenase was isolated from rice (Oryza sativa L.) and designated OsG6PDH2 in this article. Through semiquantitative RT-PCR approach it was found that OsG6PDH2 mRNA was weakly expressed in rice leaves, stems, immature spikes or flowered spikes, and a little higher in roots. However, the expression of OsG6PDH2 in rice seedlings was significantly induced by dark treatment. The complete opening reading frame (ORF) of OsG6PDH2 was inserted into pET30a (+), and expressed in Escherichia coli strain BL21 (DE3). The enzyme activity assay of transformed bacterial cells indicated that OsG6PDH2 encoding product had a typical function of glucose-6-phosphate dehydrogenase.  相似文献   

14.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries. (J Histochem Cytochem 57:1003–1011, 2009)  相似文献   

15.
The earliest biochemical marker of floral evocation in the shoot apex of S. oleracea is the doubling of the rate of glucose-6-phosphate dehydrogenase (G6PD) activity 12–15 h after transfer of 4-week-old plants from short days to continuous light i.e. 1–2 h after the leaves are raised to the floral state. Quantitative cytochemical analysis of G6PD activity in the vegetative apices showed that addition of 10−7 M Ca2+ to the cytochemical enzyme reaction medium for G6PD activity raises the rate of enzyme activity to that seen in the induced apices. Higher concentrations of Ca2+ result in G6PD inhibition in the vegetative apices and any added Ca2+ at concentrations of 10−7 M or higher inhibit the G6PD activity seen in both the induced apices and leaf primordia of both types of apex. The addition of EGTA abolishes the cytochemical reaction. The ability of the Ca2+ to activate the G6PD activity in addition to the incubation medium occurs during the periods of 8–11 h of continuous light, but is already lost by 12 h when no change is achieved by Ca2+ treatment. This can be interpreted as indicating a point in time close to the moment of floral evocation. A model is proposed in which Ca2+ is able to activate the inactivated-G6PD molecules in the vegetative apex through increased Ca2+ flux possibly through the action of plasmalemmal Ca2+-ATPase activity as part of the floral evocation process. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

17.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

18.
The technique of heat denaturation was used in addition to electrophoresis for the detection of thermostability variants of hemoglobin and glucose-6-phosphate dehydrogenase in an attempt to measure the amount of genetic variability present in villages in the United Republic of Cameroon, Equatorial Africa. A minimum of three to a maximum of 13 thermostability variants were estimated for HbA and HbS, and a minimum of two to a maximum of ten thermostability variants were estimated for GdA, GdB, and GdA —. It is suggested that hemoglobin and glucose-6-phosphate dehydrogenase thermostability variants are genetically determined and that the sites of these variants are at the hemoglobin and glucose-6-phosphate dehydrogenase structural loci. The evidence for the existence of these hidden variants and their importance in the neutralist v. selectionist controversy are discussed.This work was supported in part by National Institutes of Health Grant HL 16005. S. C. B. was an International Telephone and Telegraph International Fellow to Cameroon, was supported by Training Grant NIH-GM 07197, and is currently an Insurance Medical Scientist Scholar. This work is in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Genetics by S. C. B.  相似文献   

19.
Isulin is capable of regulating cellular and metabolic processes as well as gene expression. In recent years, enthusiasm has surfaced for using insulin mimetics to study the mechanism of action of insulin. Vanadata and selenate are two compounds that have been found to mimic the action of insulin on control to blood glucose levels in vivo. Vanadata has also been shown to regulate the expression of several enzymes both in vivo, however, studies concerning selenate's ability to regulate expression have not been reported. In his study we show that administration of vanadate or selenate to streptozotocin-induced diabetic rats not only normalizes blood glucose levels similarly to insulin but also positively affects the expression of two key metabolic enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and fatty acid synthase (FAS). Both G6PDH and FAS activity are significantly decreased in diabetic animals compared to non-diabetic control. Treatment of the diabetic animals with either insulin, vanadate or selenate restored both activities to about 80–90% of control. All treatment conditions exhibited activities significantly higher than those determined for the diabetic group but did not differ significantly from each other. Increases in GPDH or FAS activity are due to increases in mRNA level. Increase in both G6PDH and FAS mRNA was comparable to the observed increase in activity suggesting that regulation of expression by the mimetics occurs pretranslationally.  相似文献   

20.
Glucose-6-phosphate dehydrogenase was purified from rabbit brain cortex using a single immunoaffinity chromatographic step and was contaminated only by a 50 kDa protein. The proteins, separated by SDS-PAGE, were sequenced: the glucose-6-phosphate dehydrogenase was blocked at the N-terminal, the co-eluted protein was similar to -tubulin. Our technique can be applied to purification and sequencing of the enzyme from brain areas or to measure its turnover rate in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号