首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
We have determined and refined the X-ray crystal structures of six periplasmic binding proteins that serve as initial receptors for the osmotic-shock sensitive, active transport of L-arabinose, D-galactose/D-glucose, maltose, sulphate, leucine/isoleucine/valine and leucine. The tertiary structures and atomic interactions between proteins and ligands show common features that are important for understanding the function of the binding proteins. All six structures are ellipsoidal, consisting of two similar, globular domains. The ligand-binding site is located deep in the cleft between the two domains. Irrespective of the nature of the ligand (e.g. saccharide, sulphate dianion or leucine zwitterion), the specificities and affinities of the binding sites are achieved mainly through hydrogen-bonding interactions. Binding of ligands induces a large protein conformational change. Three different structures have been observed among the binding proteins: unliganded 'open cleft', liganded 'open cleft', and liganded 'closed cleft'. Here we discuss the functions of binding proteins in the light of numerous crystallographic and ligand-binding studies and propose a mechanism for the binding protein-dependent, high-affinity active transport.  相似文献   

2.
Hydroxynitrile lyases are versatile enzymes that enantiospecifically cope with cyanohydrins, important intermediates in the production of various agrochemicals or pharmaceuticals. We determined four atomic resolution crystal structures of hydroxynitrile lyase from Hevea brasiliensis: one native and three complexes with acetone, isopropyl alcohol, and thiocyanate. We observed distinct distance changes among the active site residues related to proton shifts upon substrate binding. The combined use of crystallography and ab initio quantum chemical calculations allowed the determination of the protonation states in the enzyme active site. We show that His(235) of the catalytic triad must be protonated in order for catalysis to proceed, and we could reproduce the cyanohydrin synthesis in ab initio calculations. We also found evidence for the considerable pK(a) shifts that had been hypothesized earlier. We envision that this knowledge can be used to enhance the catalytic properties and the stability of the enzyme for industrial production of enantiomerically pure cyanohydrins.  相似文献   

3.
Extended spectrum beta-lactamases (ESBLs) confer bacterial resistance to third-generation cephalosporins, such as cefotaxime and ceftazidime, increasing hospital mortality rates. Whereas these antibiotics are almost impervious to classic beta-lactamases, such as TEM-1, ESBLs have one to four orders greater activity against them. The origins of this activity have been widely studied for the TEM and SHV-type ESBLs, but have received less attention for the CTX-M beta-lactamases, an emerging family that is now the dominant ESBL in several regions. To understand how CTX-M beta-lactamases achieve their remarkable activity, biophysical and structural studies were undertaken. Using reversible, two-state thermal denaturation, it was found that as these enzymes evolve a broader substrate range, they sacrifice stability. Thus, the mutant enzyme CTX-M-16 is eightfold more active against ceftazidime than the pseudo-wild-type CTX-M-14 but is 1.9 kcal/mol less stable. This is consistent with a "stability-activity tradeoff," similar to that observed in the evolution of other resistance enzymes. To investigate the structural basis of enzyme activity and stability, the structures of four CTX-M enzymes were determined by X-ray crystallography. The structures of CTX-M-14, CTX-M-27, CTX-M-9 and CTX-M-16 were determined to 1.10 Angstroms, 1.20 Angstroms, 0.98 Angstroms and 1.74 Angstroms resolution, respectively. The enzyme active sites resemble those of the narrow-spectrum TEM-1 and SHV-1, and not the enlarged sites typical of ESBL mutants such as TEM-52 and TEM-64. Instead, point substitutions leading to specific interactions may be responsible for the improved activity against ceftazidime and cefotaxime, consistent with observations first made for the related Toho-1 enzyme. The broadened substrate range of CTX-M-16 may result from coupled defects in the enzyme's B3 strand, which lines the active site. Substitutions Val231-->Ala and Asp240-->Gly, which convert CTX-M-14 into CTX-M-16, occur at either end of this strand. These defects appear to increase the mobility of B3 based on anisotropic B-factor analyses at ultrahigh resolution, consistent with stability loss and activity gain. The unusually high resolution of these structures that makes such analyses possible also makes them good templates for inhibitor discovery.  相似文献   

4.
5.
Bacteria produce functional amyloid fibers called curli in a controlled, noncytotoxic manner. These extracellular fimbriae enable biofilm formation and promote pathogenicity. Understanding curli biogenesis is important for appreciating microbial lifestyles and will offer clues as to how disease-associated human amyloid formation might be ameliorated. Proteins encoded by the curli specific genes (csgA-G) are required for curli production. We have determined the structure of CsgC and derived the first structural model of the outer-membrane subunit translocator CsgG. Unexpectedly, CsgC is related to the N-terminal domain of DsbD, both in structure and oxido-reductase capability. Furthermore, we show that CsgG belongs to the nascent class of helical outer-membrane macromolecular exporters. A cysteine in a CsgG transmembrane helix is a potential target of CsgC, and mutation of this residue influences curli assembly. Our study provides the first high-resolution structural insights into curli biogenesis.  相似文献   

6.
The nuclear envelope and nuclear transport   总被引:6,自引:0,他引:6  
  相似文献   

7.
The polarized morphology of neurons poses a particular challenge to intracellular signal transduction. Local signals generated at distal sites must be retrogradely transported to the nucleus to produce persistent changes in neuronal function. Such communication of signals between distal neuronal compartments and the nucleus occurs during axon guidance, synapse formation, synaptic plasticity and following neuronal injury. Recent studies have begun to delineate a role for the active nuclear import pathway in transporting signals from axons and dendrites to the nucleus. In this pathway, soluble cargo proteins are recognized by nuclear transport carriers, called importins, which mediate their translocation from the cytoplasm into the nucleus. In neurons, importins might serve an additional function by carrying signals from distal sites to the soma.  相似文献   

8.
This paper describes the progress in our efforts at producing ultra-high resolution (< 0.8 A) DNA structures using advanced cryo-crystallography and synchrotron. Our work is aimed at providing reliable geometric (bond length and bond angle), electronic and motional information of DNA molecules in different conformational contexts. These highly-reliable, new structures will be the basis for constructing better DNA force-field parameters, which will benefit the structural refinement of DNA, protein-DNA complexes, and ligand-DNA complexes.  相似文献   

9.
The Rieske [2Fe-2S] iron-sulfur protein of cytochrome bc(1) functions as the initial electron acceptor in the rate-limiting step of the catalytic reaction. Prior studies have established roles for a number of conserved residues that hydrogen bond to ligands of the [2Fe-2S] cluster. We have constructed site-specific variants at two of these residues, measured their thermodynamic and functional properties, and determined atomic resolution X-ray crystal structures for the native protein at 1.2 A resolution and for five variants (Ser-154-->Ala, Ser-154-->Thr, Ser-154-->Cys, Tyr-156-->Phe, and Tyr-156-->Trp) to resolutions between 1.5 A and 1.1 A. These structures and complementary biophysical data provide a molecular framework for understanding the role hydrogen bonds to the cluster play in tuning thermodynamic properties, and hence the rate of this bioenergetic reaction. These studies provide a detailed structure-function dissection of the role of hydrogen bonds in tuning the redox potentials of [2Fe-2S] clusters.  相似文献   

10.
11.
Due to the limited distance data available from the experiments, the structures determined by NMR Spectroscopy may not always be as accurate as desired. Further refinement of the structures is often required and sometimes critical. With the increase of high quality protein structures determined and deposited in PDB Data Bank, commonly shared protein conformational properties can be extracted based on the statistical distributions of the properties in the structural database and used to improve the outcomes of the NMR-determined structures. Here we examine the distributions of protein interatomic distances in known protein structures. We show that based on these distributions, a set of mean-force potentials can be defined for proteins and employed to refine the NMR-determined structures. We report the test results on 70 NMR-determined structures and compare the potential energy, the Ramachandran plot, and the ensemble RMSD of the structures refined with and without using the derived mean-force potentials.  相似文献   

12.
13.
We provide the first atomic resolution (<1.20 A) structure of a copper protein, nitrite reductase, and of a mutant of the catalytically important Asp92 residue (D92E). The atomic resolution where carbon-carbon bonds of the peptide become clearly resolved, remains a key goal of structural analysis. Despite much effort and technological progress, still very few structures are known at such resolution. For example, in the Protein Data Bank (PDB) there are some 200 structures of copper proteins but the highest resolution structure is that of amicyanin, a small (12 kDa) protein, which has been resolved to 1.30 A. Here, we present the structures of wild-type copper nitrite reductase (wtNiR) from Alcaligenes xylosoxidans (36.5 kDa monomer), the "half-apo" recombinant native protein and the D92E mutant at 1.04, 1.15 and 1.12A resolutions, respectively. These structures provide the basis from which to build a detailed mechanism of this important enzyme.  相似文献   

14.
15.
Anne-Christine Ström  Karsten Weis 《Genome biology》2001,2(6):reviews3008.1-reviews30089
In recent years, our understanding of macromolecular transport processes across the nuclear envelope has grown dramatically, and a large number of soluble transport receptors mediating either nuclear import or nuclear export have been identified. Most of these receptors belong to one large family of proteins, all of which share homology with the protein import receptor importin β (also named karyopherin β). Members of this family have been classified as importins or exportins on the basis of the direction they carry their cargo. To date, the family includes 14 members in the yeast Saccharomyces cerevisiae and at least 22 members in humans. Importins and exportins are regulated by the small GTPase Ran, which is thought to be highly enriched in the nucleus in its GTP-bound form. Importins recognize their substrates in the cytoplasm and transport them through nuclear pores into the nucleus. In the nucleoplasm, RanGTP binds to importins, inducing the release of import cargoes. In contrast, exportins interact with their substrates only in the nucleus in the presence of RanGTP and release them after GTP hydrolysis in the cytoplasm, causing disassembly of the export complex. Thus, common features of all importin-β-like transport factors are their ability to shuttle between the nucleus and the cytoplasm, their interaction with RanGTP as well as their ability to recognize specific transport substrates.  相似文献   

16.
17.
In a recent issue of Molecular Cell, Yoon et al. provide evidence for the control of nucleocytoplasmic transport by protein kinase signaling pathways through phosphorylation of RanBP3, an accessory factor in the Ran GTPase system. This mechanism may coordinate nucleocytoplasmic transport with other mitogenic effects of these pathways.  相似文献   

18.
19.
Fundamental to eukaryotic cell function, nucleocytoplasmic transport can be regulated at many levels, including through modulation of the importin/exportin (Imp/Exp) nuclear transport machinery itself. Although Imps/Exps are overexpressed in a number of transformed cell lines and patient tumor tissues, the efficiency of nucleocytoplasmic transport in transformed cell types compared with nontransformed cells has not been investigated. Here we use quantitative live cell imaging of 3 isogenic nontransformed/transformed cell pairs to show that nuclear accumulation of nuclear localization signal (NLS)-containing proteins, but not their NLS-mutated derivatives, is increased up to 7-fold in MCF10CA1h human epithelial breast carcinoma cells and in simian virus 40 (SV40)-transformed fibroblasts of human and monkey origin, compared with their nontransformed counterparts. The basis for this appears to be a significantly faster rate of nuclear import in transformed cell types, as revealed by analysis using fluorescence recovery after photobleaching for the human MCF10A/MCF10CA1h cell pair. Nuclear accumulation of NLS/nuclear export signal-containing (shuttling) proteins was also enhanced in transformed cell types, experiments using the nuclear export inhibitor leptomycin B demonstrating that efficient Exp-1-mediated nuclear export was not impaired in transformed compared with nontransformed cells. Enhanced nuclear import and export efficiencies were found to correlate with 2- to 4-fold higher expression of specific Imps/Exps in transformed cells, as indicated by quantitative Western blot analysis, with ectopic expression of Imps able to enhance NLS nuclear accumulation levels up to 5-fold in nontransformed MCF10A cells. The findings indicate that transformed cells possess altered nuclear transport properties, most likely due to the overexpression of Imps/Exps. The findings have important implications for the development of tumor-specific drug nanocarriers in anticancer therapy.  相似文献   

20.
Several investigations have demonstrated the ability of synthetic peptides homologous to the nuclear transport signal of simian virus 40 large T antigen to induce the nuclear transport of nonnuclear carrier proteins. To determine the generality of peptide-induced transport, six peptides with sequences derived from four previously identified nuclear transport signals were synthesized and examined for their ability to induce the transport of mouse immunoglobulin G following microinjection into the cytoplasm of mammalian cells. Peptides containing transport signals from simian virus 40 T antigen, Xenopus nucleoplasmin, and adenovirus E1A proteins were highly efficient at peptide-induced transport, while a peptide homologous to yeast MAT alpha 2 protein was incapable of inducing transport. A short nucleoplasmin peptide that contained only the basic amino acid domain was capable of inducing transport but yielded a much slower rate of transport than a long nucleoplasmin peptide encompassing the previously identified minimal transport signal. The short nucleoplasmin signal exhibited a greater capacity for transport than a peptide homologous to the cytoplasmic mutant T antigen signal when conjugates with a low number of signals coupled per carrier protein were examined. However, the short nucleoplasmin peptide was only marginally more effective than the T antigen mutant peptide when conjugates with a high number of signals coupled per carrier protein were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号