共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Fluoropropynyl-2'-deoxyuridine 5'-phosphate (3) was designed as a mechanism-based inactivator of thymidylate synthase (TS). The inhibitor was synthesized from 5-iodo-2'-deoxyuridine and propargyl alcohol by palladium-catalyzed coupling, followed by fluorination and selective phosphorylation. Incubation of TS with 3, in the presence or absence of the CH2H4folate cofactor, caused rapid, irreversible inactivation of the enzyme. 相似文献
2.
B Go?os J M Dzik Z Kazimierczuk J Cie?la Z Zieliński J Jankowska A Kraszewski J Stawiński W Rode D Shugar 《Biological chemistry》2001,382(10):1439-1445
New analogs of dUMP, dTMP and 5-fluoro-dUMP, including the corresponding 5'-thiophosphates (dUMPS, dTMPS and FdUMPS), 5'-dithiophosphates (dUMPS2, dTMPS2 and FdUMPS2), 5'-H-phosphonates (dUMP-H, dTMP-H and FdUMP-H) and 5'-S-thiosulfates (dUSSO3, dTSSO3 and FdUSSO3), have been synthesized and their interactions studied with highly purified mammalian thymidylate synthase. dUMPS and dUMPS2 proved to be good substrates, and dTMPS and dTMPS2 classic competitive inhibitors, only slightly weaker than dTMP. Their 5-fluoro congeners behaved as potent, slow-binding inhibitors. By contrast, the corresponding 5'-H-phosphonates and 5'-S-thiosulfates displayed weak activities, only FdUMP-H and FdUSSO3 exhibiting significant interactions with the enzyme, as weak competitive slow-binding inhibitors versus dUMR The pH-dependence of enzyme time-independent inhibition by FdUMP and FdUMPS was found to correlate with the difference in pKa values of the phosphate and thiophosphate groups, the profile of FdUMPS being shifted (approximately 1 pH unit) toward lower pH values, so that binding of dUMP and its analogs is limited by the phosphate secondary hydroxyl ionization. Hence, together with the effects of 5'-H-phosphonate and 5'-S-thiosulfate substituents, the much weaker interactions of the nucleotide analogs (3-5 orders of magnitude lower than for the parent 5'-phosphates) with the enzyme is further evidence that the enzyme's active center prefers the dianionic phosphate group for optimum binding. 相似文献
3.
N V Beaudette N Langerman R L Kisliuk Y Gaumont 《Archives of biochemistry and biophysics》1977,179(1):272-278
The thermodynamic parameters, ΔH′, ΔG′, and ΔS′, and the stoichiometry for the binding of the substrate 2′-deoxyuridine-5′-phosphate (dUMP) and the inhibitor 5-fluoro-2′-deoxyuridine-5′-phosphate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) have been investigated using both direct calorimetric methods and gel filtration methods. The data obtained show that two ligand binding sites are available but that the binding of the second mole of dUMP is extremely weak. Binding of the first mole of dUMP can best be illustrated by dUMP + TSase + H+?(dUMP-TSase-H+). [1] The enthalpy, ΔH1′, for reaction [1] was measured directly on a flow modification of a Beckman Model 190B microcalorimeter. Experiments in two different buffers (I = 0.10 m) show that ΔH1′ = ?28 kJ mol?1 and that 0.87 mol of protons enters into the reaction. Analysis of thermal titrations for reaction [1] indicates a free energy change of ΔG1′ = ?30 kJ mol?1 (K1 = 1.7 × 105 m?1). From these parameters, ΔS1′ was calculated to be +5 J mol?1 degree?1, showing that the reaction is almost totally driven by enthalpy changes. Gel filtration experiments show that at very high substrate concentrations, binding to a second site can be observed. Gel filtration experiments performed at low ionic strength (I = 0.05 m) reveal a stronger binding, with ΔG1′ = ?35 kJ mol?1 (K1 = 1.2 × 106 m?1), suggesting that the forces driving the interaction are, in part, electrostatic. Addition of 2-mercaptoethanol (0.10 m) had the effect of slightly increasing the dUMP binding constant. Binding of FdUMP to TSase is best illustrated by 2FdUMP + TSase + nHH+?FdUMP2 ? TSase ? (H+)nH. [2] The enthalpy for this reaction, ΔH2, was also measured calorimetrically and found to be ?30 kJ mol?1 with nH = 1.24 at pH 7.4 Assuming two FdUMP binding sites per dimer as established by Galivan et al. [Biochemistry15, 356–362 (1976)] our calorimetric results indicate different binding energies for each site. Based on the binding data, a thermodynamic model is presented which serves to rationalize much of the confusing physical and chemical data characterizing thymidylate synthetase. 相似文献
4.
5.
Kinetics and thermodynamics of the interaction of 5-fluoro-2'-deoxyuridylate with thymidylate synthase 总被引:2,自引:0,他引:2
Thymidylate synthase (TS), 5-fluorodeoxyuridylate (FdUMP), and 5,10-methylenetetrahydrofolate (CH2-H4folate) form a covalent complex in which a Cys thiol of TS is attached to the 6-position of FdUMP and the one-carbon unit of the cofactor is attached to the 5-position. The kinetics of formation of this covalent complex have been determined at several temperatures by semirapid quench methods. Together with previously reported data the results permit calculation of every rate and equilibrium constant in the interaction. Conversion of the noncovalent ternary complex to the corresponding covalent complex proceeds at a rate of 0.6 s-1 at 25 degrees C, and the dissociation constant for loss of CH2-H4folate from the noncovalent ternary complex is approximately 1 microM. Activation parameters for the formation of the covalent complex were shown to be Ea = 20 kcal/mol, delta G+ = 17.9 kcal/mol, delta H+ = 19.3 kcal/mol, and delta S+ = 0.005 kcal/(mol.deg). The equilibrium constant between the noncovalent and covalent ternary complexes is approximately 2 X 10(4), and the overall dissociation constant of CH2-H4folate from the covalent complex is approximately 10(-11) M. The conversion of the noncovalent ternary complex to the covalent adduct is about 12-fold slower than kcat in the normal enzymic reaction. However, because the dissociation constant for CH2-H4folate from the noncovalent ternary complex is about 10-fold lower than that from the TS-dUMP-CH2-H4folate Michaelis complex, the terms corresponding to kcat/Km are nearly equal. We propose that some of the intrinsic binding energy of CH2-H4folate may be used to facilitate formation of a 5-iminium ion intermediate.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Newby Z Lee TT Morse RJ Liu Y Liu L Venkatraman P Santi DV Finer-Moore JS Stroud RM 《Biochemistry》2006,45(24):7415-7428
The enzyme thymidylate synthase (TS) catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate. Using kinetic and X-ray crystallography experiments, we have examined the role of the highly conserved Tyr-261 in the catalytic mechanism of TS. While Tyr-261 is distant from the site of methyl transfer, mutants at this position show a marked decrease in enzymatic activity. Given that Tyr-261 forms a hydrogen bond with the dUMP 3'-O, we hypothesized that this interaction would be important for substrate binding, orientation, and specificity. Our results, surprisingly, show that Tyr-261 contributes little to these features of the mechanism of TS. However, the residue is part of the structural core of closed ternary complexes of TS, and conservation of the size and shape of the Tyr side chain is essential for maintaining wild-type values of kcat/Km. Moderate increases in Km values for both the substrate and cofactor upon mutation of Tyr-261 arise mainly from destabilization of the active conformation of a loop containing a dUMP-binding arginine. Besides binding dUMP, this loop has a key role in stabilizing the closed conformation of the enzyme and in shielding the active site from the bulk solvent during catalysis. Changes to atomic vibrations in crystals of a ternary complex of Escherichia coli Tyr261Trp are associated with a greater than 2000-fold drop in kcat/Km. These results underline the important contribution of dynamics to catalysis in TS. 相似文献
7.
A I Kassis W E Guptill R A Taube S J Adelstein 《Journal of nuclear biology and medicine (Turin, Italy : 1991)》1991,35(3):167-173
We have enhanced the uptake of 5-[125I]iodo-2'-deoxyuridine (125IUdR) in Chinese hamster V79 cells with 5-fluoro-2'-deoxyuridine (FUdR) and have examined the combined toxicity of these agents. Although the uptake of 125IUdR increases approximately 3.2 +/- 0.5-fold in the presence of 1 microM FUdR, when cell survival fraction is plotted as a function of intranuclear 125IUdR content, the biphasic curve obtained reaches a plateau at a higher survival fraction than with control cells not exposed to FUdR. The results suggest that a greater number of cells were prevented from entering the S phase and consequently from incorporating 125IUdR. An FUdR- 125IUdR combination, therefore, does not seem to enhance the therapeutic potential of 125IUdR. Such observations are also of importance when FUdR and other inhibitors are used to enhance cold IUdR uptake in an effort to obtain an increase in radiosensitization effects. 相似文献
8.
R Nayak 《Biochemical and biophysical research communications》1992,184(1):467-470
5-Fluoro-2'-deoxyuridine is incorporated into DNA of mouse breast tumour in vivo. The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA. 相似文献
9.
M W Gray 《Canadian journal of biochemistry》1976,54(5):413-422
A procedure for the quantitative measurement of the O2'-methylnucleoside constitutents of RNA has recently been developed in this laboratory (Gray, M.W. Can. J. Biochem. 53, 735-746 (1975)). This assay method is based on the resistance of O2'-methylnucleoside 5'-phosphates (pNm) (generated by phosphodiesterase hydrolysis of RNA) to subsequent dephosphorylation by venom 5'-nucleotidase (EC 3.1.3.5). In the present investigation, two base-modified 5'-nucleotides, each displaying an unusual resistance to 5'-nucleotidase, have been identified. These compounds have been characterized by a variety of techniques as N2, N2-dimethylguanosine 5'-phosphate (pm2/2G) and 3-(3-amino-3-carboxypropyl)uridine 5'-phosphate (p4abu3U). Because of their resistance to 5'-nucleotidase, pm2/2G and p4abu3U are isolated along with the pNm in the mononucleotide fraction of venom hydrolysates of transfer RNA. Under hydrolysis conditions, the stability of p4abu3U is comparable to that of a pNm, allowing quantitative assay of the nucleotide. The proportion (mean +/- SD) of p4abu3U in venom hydrolysates of wheat embryo and Escherichia coli tRNA has been determined to be 0.35 +/- 0.03 (n=5) and 0.14 +/- 0.02 (n=4) mol%, respectively. The absence of p4abu3U in venom hydrolysates of yeast tRNA implies the absence of the corresponding nucleoside in yeast tRNA, in agreement with existing data. The variable recovery of pm2/2G from venom hydrolysates of wheat embryo and yeast tRNA indicates that under hydrolysis conditions, this base-modified nucleotide is only partially resistent to 5'-nucleotidase. The complete absence of pm2/2G in venom hydrolysates of E. coli tRNA is consistent with the known absence of N2, N2-dimethylguanosine in this RNA. These observations demonstrate that resistance to 5'-nucleotidase is a necessary but not sufficient criterion for concluding that a 5'-nucleotide is O2'-methylated. When applied to wheat embryo ribosomal RNA, the analytical methods described in this report failed to reveal any compound having the distinctive charge properties of p4abu3U. It therefore appears that 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine, recently characterized as a constituent of the 18 S rRNA of Chinese hamster cells (Saponara, A.G. & Enger, M.D. Biochim. Biophys. Acta 349, 61-77 (1974)), may not be present in wheat embryo ribosomal RNA. 相似文献
10.
The purpose of this study was to improve the application of bromodeoxyuridine (BrdUrd) for the flow cytometric analysis of cell kinetics. In order to obtain a quantitative measure of the DNA synthesis rate (or the number of divided cells), BrdUrd should replace thymidine (dThd) completely in the newly synthesized DNA strands. The de novo synthesis of dThd monophosphate competing with BrdUrd incorporation was stopped by fluorodeoxyuridine (FdUrd). Cells of a human leukemic cell line (REH) were exposed to BrdUrd for either 20 min, 8 h, or 24 h. Bromodeoxyuridine incorporation was determined by a monoclonal antibody as well as by the BrdUrd/Hoechst (H) technique. Counterstaining of the DNA was performed with propidium iodide or ethidium bromide. DNA fluorescence was measured in both techniques with a two-parameter flow cytometer, the histograms being analyzed by computer. It was found that FdUrd is required in the BrdUrd/H technique for replacement of dThd at low BrdUrd concentrations and long incubation times. With short incubation periods, as used for detection by the monoclonal anti-BrdUrd antibody, FdUrd increases the incorporated BrdUrd amount when BrdUrd concentrations of 10 microM or less are applied. 相似文献
11.
J M Dzik M Bretner T Kulikowski J Ciesla J M Ciesla W Rode D Shugar 《Biochemical and biophysical research communications》1988,155(3):1418-1423
A study has been made of the interaction of 3'-azido-3'-deoxythymidine 5'-phosphate (AZTMP) and 3'-azido-2',3'-dideoxy-uridine 5'-phosphate (AZdUMP) with thymidylate synthase. With the enzyme from L1210 cells and the tapeworm Hymenolepis diminuta, AZTMP was a weak inhibitor competitive with respect to dUMP (Ki = 6.3 mM and 0.5 mM); hence cytotoxicity of AZT, in cells in which accumulation of AZTMP is not high, is not due to inhibition of cellular thymidylate synthase. AZdUMP, with the L1210 enzyme, was a weak substrate (competition with dUMP described by apparent Ki = 4.7 mM), excluding conversion of AZdUMP to AZTMP as a source of toxicity of 3'-azido-2',3'-dideoxyuridine. An efficient procedure is described for enzymatic phosphorylation on a preparative scale of dideoxynucleosides. 相似文献
12.
C B Brouillette C T Chang M P Mertes 《Biochemical and biophysical research communications》1979,87(2):613-618
5(α-Bromoacetyl)-2′-deoxyuridine 5′-phosphate is an active site-directed irreversible inhibitor of thymidylate synthetase from . The reversible inhibition (KI4uM) is competitive with substrate and on incubation the reversible enzyme-inhibitor complex is converted to the irreversible complex with a first order rate constant (k2) of 0.15 min?1. 相似文献
13.
Structure of the (H2A-H2B-H3-H4)2 histone octamer isolated from calf thymus chromatin at ionic strength 0.1 to 4.0 M NaCl, pH 7.6, was studied spectrofluorometrically. Sensitivity of lambda max tyrosine fluorescence position to structural changes of histone oligomers and to the processes of their association was shown. It were detect two ranges of cooperative changes in histone optical parameters at 0.6-1.4 M NaCl (transition I) and at 2.4-3.4 M NaCl (transition II): Transition I corresponds to the formation of equilibrium system (hexamer) + (dimer) in equilibrium octamer. Transition II corresponds to the structural changes of the histone octamer. Thus, fluorescence anisotropy increases, lambda max for fluorescence spectrum is shifted to the longer wavelengths, contributions of two components to fluorescence decay change, a fraction of fluorescence accessible to the quenching by I- decreases. Histone octamer formation is characterized by making specific contacts between the (H2A-H2B) dimer and (H3-H4)2 tetramer. These contacts are realized at gradual changing of ionic strengths (by dialysis). In the case of abrupt local changes of the environment the process is irreversibly shifted to formation of unspecific high molecular aggregates. The important function role for energetically degenerated states of histone oligomers, energy barriers between which can be overcome by changing total conditions of histone microenvironment in chromatin is discussed. 相似文献
14.
Thymidylate synthase (TS) is a target enzyme for a number of anticancer agents including the 5-fluorouracil metabolite, FdUMP. The present paper reports on molecular modeling studies of the effect of substitution at C(5) position in the pyrimidine ring of the TS substrate, dUMP, on the binding affinity for the enzyme. The results of molecular dynamics simulations show that the binding of C(5) analogues of dUMP to TS in the binary complexes does not undergo changes, unless a substituent with a large steric effect, such as the propyl group, is involved. On the other hand, apparent differences in the binding of the TS cofactor, resulting from varying substitution at dUMP C(5), are observed in the modeled structures of the ternary complexes of TS. These binding characteristics are supplemented with a classical QSAR model quantifying the relation between the affinity for TS and the substituent electronic and steric effects of C(5) analogues of dUMP. Based on the findings from the present work, the perspectives for finding promising new C(5) analogues of dUMP as potential agents targeted against TS are discussed. 相似文献
15.
Incubation of [3'-3H]2'-chloro-2'-deoxyuridine 5'-triphosphate (CldUTP) with adenosylcobalamin (AdoCbl), reductant, and ribonucleotide reductase from Lactobacillus leichmannii results in the production of 3H2O, uracil, tripolyphosphate, 5'-deoxyadenosine, and cob(II)alamin. The rate of 3H2O release (0.19 mumol/min/mg) is almost identical with the rate of UTP reduction (0.24 mumol/min/mg). The amount of 3H2O release is dependent upon the enzyme to cofactor ratio. With a ribonucleotide reductase: AdoCbl ratio of 1:1000, approximately 500 eq of 3H2O are released. At this time the enzyme is still active, but further destruction of cofactor and turnover of CldUTP is prevented by competitive inhibition of Co(II) + 5'-deoxyadenosine with AdoCbl for binding to ribonucleotide reductase. The 5'-deoxyadenosine and AdoCbl reisolated during incubation of [3'-3H]CldUTP and ribonucleotide reductase contains no detectable radioactivity. 相似文献
16.
Suter W Plappert-Helbig U Glowienke S Poetter-Locher F Staedtler F Racine R Martus HJ 《Mutation research》2004,568(2):195-209
5-(2-chloroethyl)-2'-deoxyuridine (CEDU) had been developed for the treatment of herpes simplex infections. In the Salmonella reverse mutation test, the compound was found to be mutagenic in strains TA1535 and TA102 at very high concentrations (> or =2500 micro g/plate), both with and without S9-mix. The mutagenic potential of CEDU was further investigated in vivo and in vitro. It did not induce DNA repair in rat hepatocyte primary cultures, and was negative in the micronucleus test in V79 cells and in the comet assay in human leukocytes. In vivo, CEDU was negative in the bone marrow micronucleus test in CD1 mice. The mouse spot test provided a clearly positive result. Treatment of mice on day 9 of pregnancy with 2000 mg/kg resulted in 5.9% of the F1 animals having genetically relevant spots, whereas the corresponding vehicle control group had a spot rate of 1.9%. Since these data clearly identified CEDU as an inducer of gene mutations in vivo, this potential was further investigated in lacZ transgenic Muta Mouse. Six female animals were treated daily on five consecutive days with 2000 mg/kg/day and sacrificed, after a treatment-free sampling time, 14 days later. The data showed a clear increase in the mutant frequency in the bone marrow, the lung and in the spleen. CEDU is an exception in the group of nucleoside analogues, because it was found to be a strong gene mutagen and, in contrast to the other compounds of this group investigated so far, had no considerable clastogenic effects. 相似文献
17.
D A Matthews J E Villafranca C A Janson W W Smith K Welsh S Freer 《Journal of molecular biology》1990,214(4):937-948
The structure of the Escherichia coli thymidylate synthase (TS) covalent inhibitory ternary complex consisting of enzyme, 5-fluoro-2'-deoxyuridylate (FdUMP) and 5,10-methylene tetrahydrofolate (CH2-H4PteGlu) has been determined at 2.5 A resolution using difference Fourier methods. This complex is believed to be a stable structural analog of a true catalytic intermediate. Knowledge of its three-dimensional structure and that for the apo enzyme, also reported here, suggests for the first time how TS may activate dUMP and CH2-H4PteGlu leading to formation of the intermediate and offers additional support for the hypothesis that the substrate and cofactor are linked by a methylene bridge between C-5 of the substrate nucleotide and N-5 of the cofactor. By correlating these structural results with the known stereospecificity of the TS-catalyzed reaction it can be inferred that the catalytic intermediate, once formed, must undergo a conformational isomerization before eliminating across the bond linking C-5 of dUMP to C-11 of the cofactor. The elimination itself may be catalyzed by proton transfer to the cofactor's 5 nitrogen from invariant Asp169 buried deep in the TS active site. The juxtaposition of Asp169 and bound tetrahydrofolate in TS is remarkably reminiscent of binding geometry found in dihydrofolate reductase where a similarly conserved carboxyl group serves as a general acid for protonating the corresponding pyrazine ring nitrogen of dihydrofolate. 相似文献
18.
R A Schwendener A Supersaxo W Rubas H G Weder H R Hartmann H Schott A Ziegler H Hengartner 《Biochemical and biophysical research communications》1985,126(2):660-666
5'-O-palmitoyl- and 3',5'-O-dipalmitoyl-5-fluoro-2'-deoxyuridine were prepared by the reaction of 5-fluoro-2'-deoxyuridine in dimethylacetamide with palmitic acid chloride. The incorporation of the synthesized prodrugs into liposomes composed of egg phosphatidylcholine/stearylamine/cholesterol/alpha-tocopherol at a molar ratio of 10:1:2:0.05 was nearly quantitative; homogeneous bilayer vesicles (75 nm diameter) were obtained. Preliminary tolerance studies revealed that the prodrug-liposome preparations are about 20-60 times more toxic than the parent drug. The prodrugs incorporated into liposomes were 10 to 30 times more active against murine colon 38 carcinoma compared to the free drug. In comparison to the administration of the prodrugs in peanut oil the liposomal preparations seem to exert improved effects and represent a valuable drug delivery system for parenteral applications. 相似文献
19.
The first committed step in methanopterin biosynthesis is catalyzed by 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (RFA-P) synthase. Unlike all known phosphoribosyltransferases, beta-RFA-P synthase catalyzes the unique formation of a C-riboside instead of an N-riboside in the condensation of p-aminobenzoic acid (pABA) and 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) to produce 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (beta-RFA-P), CO(2), and inorganic pyrophosphate (PP(i)). Here we report the successful cloning, active overexpression in Escherichia coli, and purification of this homodimeric enzyme containing two 36.2-kDa subunits from the methanogen Methanococcus jannaschii. Steady-state initial velocity and product inhibition kinetic studies indicate an ordered Bi-Ter mechanism involving binding of PRPP, then pABA, followed by release of the products CO(2), then beta-RFA-P, and finally PP. The Michaelis parameters are as follows: K(m)pABA, 0.15 mm; K(m)PRPP, 1.50 mm; V(max), 375 nmol/min/mg; k(cat), 0.23 s(-1). CO(2) showed uncompetitive inhibition, K(i) = 0.990 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 1.40 mm and K = 3.800 mm, under varied pABA and saturated PRPP. RFA-P showed uncompetitive inhibition, K(i) = 0.210 mm, under varied PRPP and saturated pABA, and again uncompetitive, K(i) = 0.300 mm, under saturated PRPP and varied pABA. PP(i) exhibits competitive inhibition, K(i) = 0.320 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 0.60 mm and K(2) = 1.900 mm, under saturated PRPP and varied pABA. Synthase lacks any chromogenic cofactor, and the presence of pyridoxal phosphate and the mechanistically related pyruvoyl cofactors has been strictly excluded. 相似文献
20.
B C Hammer R A Russell R N Warrener J G Collins 《European journal of biochemistry》1989,178(3):683-688
Binding configurations and equilibria of intercalation complexes formed by the novel anthracycline drug, 2-fluoro-4-demethoxydaunomycin (2FD), with the decanucleotides d(G-C)5 and d(A-T)5 have been studied by 19F-NMR spectroscopy. The 19F chemical shift of 2FD bound to d(A-T)5 was approximately 1.5 ppm downfield of that observed for 2FD bound to d(G-C)5. By mixing equimolar amounts of aqueous d(G-C)5, d(A-T)5 and 2FD, the distribution of drug between the nucleotides was followed by observing relative peak intensities and showed no G-C or A-T binding preference at room temperature. It was shown that each decanucleotide duplex bound three 2FD molecules, giving a neighbour exclusion parameter, n, of n = 3 for this drug. The stoichiometric complexes, which we denote by [d(A-T)5][2FD]3 and [d(G-C)5][2FD]3, were also purified and isolated in this study. 相似文献