首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A plasmid was constructed containing the replication functions of pUC19, and the cgtA gene from Thermoanaerobacter sp. ATCC 53627, flanked by the dal gene from Bacillus subtilis and a sequence downstream from this gene. This was transformed into a Dal- B. subtilis strain, selecting for Dal+ transformants, which contained the cgtA gene in single copy integrated in the B. subtilis chromosome. The gene was subsequently amplified by a method which ensured that there was no functional plasmid replication system on the integrated DNA. The amplified structure was stable in the absence of selection pressure.  相似文献   

3.
C R Meyer  P Ghosh  E Remy    J Preiss 《Journal of bacteriology》1992,174(13):4509-4512
A mutant glgC gene contained in a 10.9-kb PstI fragment was cloned from the Escherichia coli B strain SG5 via colony hybridization by using a wild-type glgC probe. The altered allosteric properties of the expressed ADPglucose synthetase were found to result from the conversion of proline to serine at amino acid residue 295.  相似文献   

4.
Determinants of tetracycline resistance have been cloned from two different tetracycline-producing industrial strains of Streptomyces into Streptomyces lividans using the plasmid vector pUT206. Three plasmids, pUT250 and pUT260 with a 9.5 and a 7.5 kb insert respectively of Streptomyces rimosus DNA, and pUT270 with a 14.0 kb insert of Streptomyces aureofaciens DNA, conferring resistance to tetracycline, have been isolated. By in vitro sub-cloning, a similar fragment of 2.45 kb containing the tetracycline resistance gene (tet347) was further localized on these plasmids. The S. rimosus gene has been cloned into Escherichia coli and expressed under the control of lambda pL or Lpp promoters. Differential protein extraction of E. coli cells revealed the presence of an additional membrane-embedded protein in tetracycline-resistant cells. On the basis of available restriction endonuclease maps, the tet347 gene is probably identical to the tetB gene from S. rimosus recently identified by T. Ohnuki and co-workers as responsible for the reduced accumulation of tetracycline. The nucleotide sequence of a 2052 bp DNA fragment containing the TcR structural gene from S. rimosus has been determined. The amino acid sequence of the tet347 protein (Mr35818) deduced from the nucleotide sequence shows a limited but significant homology to other characterized tetracycline transport acting determinants from pathogenic bacteria.  相似文献   

5.
The gene coding for an extracellular lipase of Bacillus subtilis 168 was cloned and found to be expressed in Escherichia coli. Enzyme activity measurements showed no fatty acid chain length preference. A set of Tn5 insertions which inactivate the gene were localized and used to initiate its sequencing. The nucleotide sequence was determined on two independent clones expressed in E. coli. In one of these clones, the sequence revealed a frameshift, due to the presence of an additional adenine in the N-terminal region, which caused the interruption of the open reading frame, probably allowing translation to initiate at a second ATG codon. The sequence of the wild-type lip gene from B. subtilis was confirmed on the chromosomal fragment amplified by polymerase chain reaction (PCR). When compared to other lipases sequenced to date, the enzyme described here lacks the conserved pentapeptide Gly-X-Ser-X-Gly supposed to be essential for catalysis. However, alignments of several microbial lipase sequences suggest that the pentapeptide Ala-X-Ser-X-Gly present in the lipase B. subtilis may function as the catalytic site. Homologies were found in the N-terminal protein region with lipases from different Pseudomonas species. The predicted M(r) and isoelectric point for the mature protein are 19,348 and 9.7 respectively.  相似文献   

6.
Summary A cyclcodextrin glucanotransferase (CGTase) gene of Bacillus ohbensis was cloned in Escherichia coli and the nucleotide sequence was determined. A single open reading frame (2112 bp) with a TTG codon as an initiator was identified that encodes a typical signal peptide of 29 amino acids followed by the mature enzyme (675 amino acids), of which the partial amino acid sequences of the N-terminal region and some lysyl-endopeptidase fragments were determined by Edman degradation. The CGTase gene was expressed in E. coli under control of the lac promoter only when the upstream region containing a long inverted repeat structure (located at –108 to –67 bp from the initiation codon) was deleted. Substitution of an ATG codon for the initiation TTG triplet doubled the expression of the CGTase gene in E. coli. Enzyme preparations purified from the culture supernatant of B. ohbensis and from the periplasmic fraction of the E. coli transformant exhibited the same molecular weight (M r) and enzymatic properties as follows: M r, 80 000; optimum pH for activity, 5.0 (and a suboptimum at 10.0); stability between pH 6.5 and 10.0; optimum temperature for activity, 55°C; and stability below 45°C. The yields of the products from starch as the substrate were 25% for -and 5% for -cyclodextrin.The nucleotide and deduced amino acid sequence data reported in this paper have been deposited in the DDBJ, EMBL and Genbank Nucleotide Sequence Databases under the accession number D90243 Offprint requests to: T. Uozumi  相似文献   

7.
Summary The glucoamylase gene from Lactobacillus amylovorus was cloned and expressed in Escherichia coli. A genomic DNA library from Lactobacillus amylovorus was prepared by partially digesting genomic DNA with EcoRI and ligating random fragments to the EcoRI digested cloning vector, pZErO-1.1. Three E. coli transformants expressing glucoamylase were identified using a probe prepared from the STA2 glucoamylase gene from Saccharomyces cerevisiae var. diastaticus. The physical maps of the recombinant plasmids were constructed. These plasmids contained inserts of about 5.2 Kb, 5.9 Kb and 6.4 Kb respectively. Temperature and pH optima of 45°C and 6.0, respectively, were obtained for both recombinant and purified wild type glucoamylases. Also, the enzymes were found to be thermolabile at temperatures above 50°C.  相似文献   

8.
Genomic DNA fragments encoding beta-glucosidase activities of the thermophilic actinomycete Microbispora bispora were cloned into Escherichia coli. Transformants expressing beta-glucosidase activity were selected by their ability to hydrolyze the fluorogenic substrate 4-methylumbelliferyl-beta-D-glucoside. Two genes encoding beta-glucosidase activity were isolated and distinguished by restriction analysis, Southern hybridization, and the substrate specificities of the encoded enzymes. One gene, bglB, encoded a beta-glucosidase that was expressed intracellularly in E. coli. It exhibited a molecular mass of approximately 52,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and 51,280 Da by nondenaturing gradient PAGE, a pI of 4.6, and temperature and pH optima of 60 degrees C and 6.2, respectively. Cloned BglB showed greater activity against cellobiose than against aryl-beta-D-glucosides and was thermostable, retaining about 70% of its activity after 48 h at 60 degrees C. BglB activity is activated two- to threefold in the presence of 2 to 5% (0.1 to 0.3 M) glucose. The DNA sequence of the 2.2-kb insert carrying bglB has been determined. An open reading frame which codes for a protein of 473 amino acids with a predicted molecular mass of 52,227 Da showed significant homology (40 to 47% identity) with beta-glucosidases from glycosal hydrolase family 1.  相似文献   

9.
Genomic DNA fragments encoding beta-glucosidase activities of the thermophilic actinomycete Microbispora bispora were cloned into Escherichia coli. Transformants expressing beta-glucosidase activity were selected by their ability to hydrolyze the fluorogenic substrate 4-methylumbelliferyl-beta-D-glucoside. Two genes encoding beta-glucosidase activity were isolated and distinguished by restriction analysis, Southern hybridization, and the substrate specificities of the encoded enzymes. One gene, bglB, encoded a beta-glucosidase that was expressed intracellularly in E. coli. It exhibited a molecular mass of approximately 52,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and 51,280 Da by nondenaturing gradient PAGE, a pI of 4.6, and temperature and pH optima of 60 degrees C and 6.2, respectively. Cloned BglB showed greater activity against cellobiose than against aryl-beta-D-glucosides and was thermostable, retaining about 70% of its activity after 48 h at 60 degrees C. BglB activity is activated two- to threefold in the presence of 2 to 5% (0.1 to 0.3 M) glucose. The DNA sequence of the 2.2-kb insert carrying bglB has been determined. An open reading frame which codes for a protein of 473 amino acids with a predicted molecular mass of 52,227 Da showed significant homology (40 to 47% identity) with beta-glucosidases from glycosal hydrolase family 1.  相似文献   

10.
The phospholipase D (PLD) gene from Corynebacterium pseudotuberculosis has been cloned, sequenced, and expressed in Escherichia coli. Analysis of DNA sequence data reveals a major open reading frame encoding a 31.4-kilodalton protein, a size consistent with that estimated for the PLD protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of these data with the amino-terminal protein sequence indicates that the mature PLD protein is preceded by a 24-residue signal sequence. Expression of the PLD gene in E. coli is initiated from the corynebacterial promoter, and the resulting protein has sphingomyelinase activity. Primer extension mapping localized the 5' end of the PLD gene mRNA to a site 5 to 7 base pairs downstream of a region similar to the consensus sequence for E. coli promoters. Northern and Southern blot analyses suggest that the gene is transcribed from mRNA approximately 1.1 kilobases in length and that it is present in a single copy within the C. pseudotuberculosis genome.  相似文献   

11.
Carnitine dehydratase from Escherichia coli O44 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L-(-)-carnitine or crotonobetaine. The purified enzyme catalyzes the dehydration of L-(-)-carnitine to crotonobetaine (H. Jung, K. Jung, and H.-P. Kleber, Biochim. Biophys. Acta 1003:270-276, 1989). The caiB gene, encoding carnitine dehydratase, was isolated by oligonucleotide screening from a genomic library of E. coli O44 K74. The caiB gene is 1,215 bp long, and it encodes a protein of 405 amino acids with a predicted M(r) of 45,074. The identity of the gene product was first assessed by its comigration in sodium dodecyl sulfate-polyacrylamide gels with the purified enzyme after overexpression in the pT7 system and by its enzymatic activity. Moreover, the N-terminal amino acid sequence of the purified protein was found to be identical to that predicted from the gene sequence. Northern (RNA) analysis showed that caiB is likely to be cotranscribed with at least one other gene. This other gene could be the gene encoding a 47-kDa protein, which was overexpressed upstream of caiB.  相似文献   

12.
The Escherichia coli K-12 ackA gene, which encodes an acetate kinase, was cloned. The acetate kinase activities of ackA+ plasmid-containing strains were amplified 160- to 180-fold. The complete nucleotide sequence of the ackA gene was determined. It was deduced that the ackA gene coded for a protein of 400 amino acids with an Mr of 43,297. The ackA gene was found to be located about 15 kilobases upstream of the purF-folC-hisT region of the chromosome.  相似文献   

13.
The aspA gene of Escherichia coli W which encodes aspartase was cloned into the plasmid vector pBR322. The nucleotide sequences of aspA and its flanking regions were determined. The aspA gene encodes a protein with a molecular weight of 52,224 consisted of 477 amino acid residues. The amino acid sequence of the protein predicted from the nucleotide sequence was consistent with those of the NH2- and COOH-terminal regions and also with the amino acid composition of the purified aspartase determined previously. Potential promoter and terminator sequences for aspA were also found in the determined sequence.  相似文献   

14.
The Escherichia coli B mutant strain CL1136 accumulates glycogen at a 3.4- to 4-fold greater rate than the parent E. coli B strain and contains an ADPglucose synthetase with altered kinetic and allosteric properties. The enzyme from CL1136 is less dependent on the allosteric activator, fructose 1,6-bisphosphate, for activity and less sensitive to inhibition by AMP than the parent strain enzyme. The structural gene, glgC, for the allosteric mutant enzyme was selected by colony hybridization and cloned into the bacterial plasmid pBR322 by insertion of the chromosomal DNA at the PstI site. One recombinant plasmid, designated pKG3, was isolated from the genomic library of CL1136 containing glgC. The cloned ADPglucose synthetase from the mutant CL1136 was expressed and characterized with respect to kinetic and allosteric properties and found to be identical to the enzyme purified from the CL1136 strain. The mutant glgC was then subcloned into pUC118/119 for dideoxy sequencing of both strands. The mutant glgC sequence was found to differ from the wild-type at the deduced amino acid residue 67 where a single point mutation resulted in a change from arginine to cysteine.  相似文献   

15.
F Barany  D H Gelfand 《Gene》1991,109(1):1-11
Thermostable DNA ligase has been harnessed for the detection of single-base genetic diseases using the ligase chain reaction [Barany, Proc. Natl. Acad. Sci. USA 88 (1991) 189-193]. The Thermus thermophilus (Tth) DNA ligase-encoding gene (ligT) was cloned in Escherichia coli by genetic complementation of a ligts 7 defect in an E. coli host. Nucleotide sequence analysis of the gene revealed a single chain of 676 amino acid residues with 47% identity to the E. coli ligase. Under phoA promoter control, Tth ligase was overproduced to greater than 10% of E. coli cellular proteins. Adenylated and deadenylated forms of the purified enzyme were distinguished by apparent molecular weights of 81 kDa and 78 kDa, respectively, after separation via sodium dodecyl sulfate-polyacrylamide-gel electrophoresis.  相似文献   

16.
Using a pUC19-based genomic library of the anaerobic thermophilic bacterium C. thermohydrosulfuricum a DNA fragment that confers pullulanase activity to E. coli cells has been identified. Subcloning and restriction mapping procedures was carried out and the primary structure of the 5'-region of the pullulanase gene (pul) was determined. The pul enzyme was shown to be a protein with molecular weight of approximately 60,000. It was found that both pullulanase and glucoamylase activities resides in pullulanase. The intracellular distribution of pullulanase was studied. An E. coli strain that produces large amounts of thermostable pullulanase has been constructed.  相似文献   

17.
Gene estA coding for thermostable enterotoxin of Escherichia coli has been cloned. It is shown that in the E. coli strain SA162 this gene is located on the chromosome. Using polymerase chain reaction a site-directed mutagenesis of the cloned gene has been carried out, resulted in a recombinant strain--producer of the thermostable enterotoxin.  相似文献   

18.
19.
Abstract The gene coding for the thermostable α-amylase Bacillus licheniformis has been isolated from a direct shotgun in Escherichia coli using the bacteriophage lambda as a vector. The fragment containing the α-amylase gene has been sub-cloned in pBR322 and its restriction map determined. The α-amylase produced by the E. coli clones retained the thermostability of the B. licheniformis enzyme. Expression and properties of the gene product in E. coli and Bacillus subtilis have been examined.  相似文献   

20.
K Watanabe  H Iha  A Ohashi    Y Suzuki 《Journal of bacteriology》1989,171(2):1219-1222
The gene for an extremely thermostable oligo-1,6-glucosidase (dextrin-6-alpha-D-glucanohydrolase; EC 3.2.1.10) of obligately thermophilic Bacillus thermoglucosidasius KP1006 was cloned within a 4.2-kilobase HindIII-PvuII fragment of DNA by using the plasmid pUC19 as a vector and Escherichia coli C600 as a host. The gene was transcribed, presumably from its own promoter, in E. coli. E. coli with the hybrid plasmid accumulated oligo-1,6-glucosidase mainly in the cytoplasm. The level of enzyme production was comparable to that observed for B. thermoglucosidasius. The enzyme coincided absolutely with the B. thermoglucosidasius enzyme in its molecular weight (60,000), in its electrophoretic behavior on denaturing and nondenaturing polyacrylamide gels, in the temperature dependency of its stability and activity, and in its antigenic determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号