共查询到20条相似文献,搜索用时 0 毫秒
1.
Alexander DC Jones JR Tan T Chen JM Liu J 《The Journal of biological chemistry》2004,279(18):18824-18833
Phosphatidylinositol mannosides (PIMs) and their related molecules lipomannan (LM) and lipoarabinomannan (LAM) are important components of the mycobacterial cell wall. These molecules mediate host-pathogen interactions and exhibit immunomodulatory activities. The biosynthesis of these lipoglycans is not fully understood. In this study, we have identified a mycobacterial gene (Rv1500) that is involved in the synthesis of PIMs. We have named this gene pimF. Transposon mutagenesis of pimF of Mycobacterium marinum resulted in multiple phenotypes, including altered colony morphology, disappearance of tetracyl-PIM(7), and accumulation of tetraacyl-PIM(5). The syntheses of LAM and LM were also affected. In addition, the pimF mutant exhibited a defect during infection of cultured macrophage cells. Although the mutant was able to replicate and persist within macrophages, the initial cell entry step was inefficient. Transformation of the M. marinum mutant with the pimF homolog of Mycobacterium tuberculosis complemented all of the above mentioned phenotypes. These results provide evidence that PimF is a mannosyltransferase. However, sequence analysis indicates that PimF is distinct from mannosyltransferases involved in the early steps of PIM synthesis. PimF catalyzes the formation of high molecular weight PIMs, which are precursors for the synthesis of LAM and LM. As such, this work marks the first analysis of a mannosyltransferase involved in the later stages of PIM synthesis. 相似文献
2.
Korduláková J Gilleron M Mikusova K Puzo G Brennan PJ Gicquel B Jackson M 《The Journal of biological chemistry》2002,277(35):31335-31344
We examined the function of the pimA (Rv2610c) gene, located in the vicinity of the phosphatidylinositol synthase gene in the genomes of Mycobacterium tuberculosis and Mycobacterium smegmatis, which encodes a putative mannosyltransferase involved in the early steps of phosphatidylinositol mannoside synthesis. A cell-free assay was developed in which membranes from M. smegmatis overexpressing the pimA gene incorporate mannose from GDP-[(14)C]Man into di- and tri-acylated phosphatidylinositol mono-mannosides. Moreover, crude extracts from Escherichia coli producing a recombinant PimA protein synthesized diacylated phosphatidylinositol mono-mannoside from GDP-[(14)C]Man and bovine phosphatidylinositol. To determine whether PimA is an essential enzyme of mycobacteria, we constructed a pimA conditional mutant of M. smegmatis. The ability of this mutant to synthesize the PimA mannosyltransferase was dependent on the presence of a functional copy of the pimA gene carried on a temperature-sensitive rescue plasmid. We demonstrate here that the pimA mutant is unable to grow at the higher temperature at which the rescue plasmid is lost. Thus, the synthesis of phosphatidylinositol mono-mannosides and derived higher phosphatidylinositol mannosides in M. smegmatis appears to be dependent on PimA and essential for growth. This work provides the first direct evidence of the essentiality of phosphatidylinositol mannosides for the growth of mycobacteria. 相似文献
3.
Guerin ME Kordulakova J Schaeffer F Svetlikova Z Buschiazzo A Giganti D Gicquel B Mikusova K Jackson M Alzari PM 《The Journal of biological chemistry》2007,282(28):20705-20714
Mycobacterial phosphatidylinositol mannosides (PIMs) and metabolically derived cell wall lipoglycans play important roles in host-pathogen interactions, but their biosynthetic pathways are poorly understood. Here we focus on Mycobacterium smegmatis PimA, an essential enzyme responsible for the initial mannosylation of phosphatidylinositol. The structure of PimA in complex with GDP-mannose shows the two-domain organization and the catalytic machinery typical of GT-B glycosyltransferases. PimA is an amphitrophic enzyme that binds mono-disperse phosphatidylinositol, but its transferase activity is stimulated by high concentrations of non-substrate anionic surfactants, indicating that the early stages of PIM biosynthesis involve lipid-water interfacial catalysis. Based on structural, calorimetric, and mutagenesis studies, we propose a model wherein PimA attaches to the membrane through its N-terminal domain, and this association leads to enzyme activation. Our results reveal a novel mode of phosphatidylinositol recognition and provide a template for the development of potential antimycobacterial compounds. 相似文献
4.
5.
Haites RE Morita YS McConville MJ Billman-Jacobe H 《The Journal of biological chemistry》2005,280(12):10981-10987
Phosphatidylinositol (PI) is an abundant phospholipid in the cytoplasmic membrane of mycobacteria and the precursor for more complex glycolipids, such as the PI mannosides (PIMs) and lipoarabinomannan (LAM). To investigate whether the large steady-state pools of PI and apolar PIMs are required for mycobacterial growth, we have generated a Mycobacterium smegmatis inositol auxotroph by disruption of the ino1 gene. The ino1 mutant displayed wild-type growth rates and steady-state levels of PI, PIM, and LAM when grown in the presence of 1 mM inositol. The non-dividing ino1 mutant was highly resistant to inositol starvation, reflecting the slow turnover of inositol lipids in this stage. In contrast, dilution of growing or stationary-phase ino1 mutant in inositol-free medium resulted in the rapid depletion of PI and apolar PIMs. Whereas depletion of these lipids was not associated with loss of viability, subsequent depletion of polar PIMs coincided with loss of major cell wall components and cell viability. Metabolic labeling experiments confirmed that the large pools of PI and apolar PIMs were used to sustain polar PIM and LAM biosynthesis during inositol limitation. They also showed that under non-limiting conditions, PI is catabolized via lyso-PI. These data suggest that large pools of PI and apolar PIMs are not essential for membrane integrity but are required to sustain polar PIM biosynthesis, which is essential for mycobacterial growth. 相似文献
6.
Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d 总被引:1,自引:0,他引:1
Zajonc DM Ainge GD Painter GF Severn WB Wilson IA 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(7):4577-4583
Mycobacterial phosphatidylinositol tetramannosides (PIM4) are agonists for a distinct population of invariant human (Valpha24) and mouse (Valpha14) NKT cells, when presented by CD1d. We determined the crystal structure at 2.6-A resolution of mouse CD1d bound to a synthetic dipalmitoyl-PIM2. Natural PIM2, which differs in its fatty acid composition is a biosynthetic precursor of PIM4, PIM6, lipomannan, and lipoarabinomannan. The PIM2 headgroup (inositol-dimannoside) is the most complex to date among all the crystallized CD1d ligands and is remarkably ordered in the CD1d binding groove. A specific hydrogen-bonding network between PIM2 and CD1d orients the headgroup in the center of the binding groove and above the A' pocket. A central cluster of hydrophilic CD1d residues (Asp(153), Thr(156), Ser(76), Arg(79)) interacts with the phosphate, inositol, and alpha1-alpha6-linked mannose of the headgroup, whereas additional specificity for the alpha1- and alpha2-linked mannose is conferred by Thr(159). The additional two mannoses in PIM4, relative to PIM2, are located at the distal 6' carbon of the alpha1-alpha6-linked mannose and would project away from the CD1d binding groove for interaction with the TCR. Compared with other CD1d-sphingolipid structures, PIM2 has an increased number of polar interactions between its headgroup and CD1, but reduced specificity for the diacylglycerol backbone. Thus, novel NKT cell agonists can be designed that focus on substitutions of the headgroup rather than on reducing lipid chain length, as in OCH and PBS-25, two potent variants of the highly stimulatory invariant NKT cell agonist alpha-galactosylceramide. 相似文献
7.
Do H Lee WS Ghosh P Hollowell T Canfield W Kornfeld S 《The Journal of biological chemistry》2002,277(33):29737-29744
N-Acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, also known as "uncovering" enzyme (UCE), is localized in the trans-Golgi network, where it removes a covering N-acetylglucosamine from the mannose 6-phosphate recognition marker on lysosomal acid hydrolases. Here we show that UCE is synthesized as an inactive proenzyme that is activated by the endoprotease furin, which cleaves an RARLPR/D sequence to release a 24-amino acid propiece. As furin is localized in the trans-Golgi network, newly synthesized UCE is inactive until it reaches this terminal Golgi compartment. LoVo cells (derived from a human colon adenocarcinoma) lack furin activity and have extremely low UCE activity. Addition of furin to LoVo cell extracts restores UCE activity to normal levels, demonstrating that the UCE proenzyme is stable in this cell type. LoVo cells secrete acid hydrolases with phosphomannose diesters as a consequence of the deficient UCE activity. This demonstrates for the first time that UCE is the only enzyme in these cells capable of efficiently uncovering phosphomannose diesters. UCE also hydrolyzes UDP-GlcNAc, a sugar donor for Golgi N-acetylglucosaminyltransferases. The fact that UCE is not activated until it reaches the trans-Golgi network may ensure that the pool of UDP-GlcNAc in the Golgi stack is not depleted, thereby maintaining proper oligosaccharide assembly. 相似文献
8.
Evidence that the phosphatidylinositol cycle is linked to cell motility 总被引:10,自引:0,他引:10
Transmembrane signaling via specific ligand/receptor interactions induces the immediate polymerization of actin and formation of microfilament assemblies close to the plasma membrane. The profilin:actin complex appears to provide the actin for this filament formation. A clue to the nature of the regulatory mechanism involved was recently found in that phosphatidylinositol 4,5-bisphosphate can bind to profilin, dissociate the profilactin complex, and thus liberate actin for polymerization. This suggests that the phosphatidylinositol (PI) cycle, which plays important roles in cellular regulation, also might control microfilament-based motility. We show here that neomycin, a drug which has a high affinity for phosphoinositides and in vivo interferes with the PI cycle, inhibits the polymerization of actin in platelets induced either by thrombin or by ADP. When ADP was used as agonist (but not in the case of thrombin) the induction of actin polymerization could also be blocked by the addition of aspirin. Introduction of Ca2+ into platelets by the use of the ionophore A23187 or stimulation of protein kinase C (PkC) by the phorbol ester TPA did not induce actin polymerization; neither did the addition of a combination of these two agents. Retinoic acid which inhibits PkC was also without effect on thrombin-induced actin polymerization. 相似文献
9.
Glycoproteins synthesized by the cellular slime mold Dictyostelium discoideum have been shown to contain asparagine-linked high-mannose oligosaccharides which have an N-acetylglucosamine group in a novel intersecting position (attached beta 1-4 to the mannose linked alpha 1-6 to the core mannose). We have used crude membrane preparations from vegetative D. discoideum (strain M4) to characterize the enzyme activity responsible for catalyzing the transfer of GlcNAc to the intersecting position of high-mannose oligosaccharides. UDP-GlcNAc:oligosaccharide beta-N-acetylglucosaminyltransferase activity in these preparations attaches GlcNAc to the mannose residue-linked alpha 1-6 to the beta-linked core mannose of the following Man9GlcNAc oligosaccharide as shown by the arrow. (formula; see text) It will also attach GlcNAc to the same intersecting position and/or to the bisecting position (beta-linked core mannose) of the following Man5GlcNAc oligosaccharide. (formula; see text) An analysis of the pH profiles, effects of heat denaturation, and substrate inhibitions on the addition of GlcNAc to either the intersecting or bisecting position of this Man5GlcNAc oligosaccharide indicates that a single enzyme activity is responsible for transferring GlcNAc to both positions. Various oligosaccharides were assayed to determine the substrate specificity of the transferase activity. These data indicate that both the mannose-attached alpha 1-3 and the mannose-attached alpha 1-6 to the mannose receiving the GlcNAc play a critical role in substrate suitability; absence of the alpha 1-6 mannose results in at least a 90% decrease in activity, while absence of the alpha 1-3 mannose results in a completely inactive substrate. This suggests that the minimal substrate is the disaccharide Man alpha 1-3Man. 相似文献
10.
Evidence that arachidonic acid is deficient in phosphatidylinositol of Drosophila heads 总被引:1,自引:0,他引:1
T Yoshioka H Inoue T Kasama Y Seyama S Nakashima Y Nozawa Y Hotta 《Journal of biochemistry》1985,98(3):657-662
We have found that arachidonic (20 : 4) acid is indetectable in phosphatidylinositol and diacyglycerol extracted from Drosophila heads. After careful examinations of the lipid extraction processes and fatty acid detection system (gas-liquid chromatography), we excluded the possibility of the oxidation of polyunsaturated fatty acids or of having overlooked a trace amount of the fatty acid. The precursors of arachidonic, dihomo gamma-linolenic (20 : 3), and gamma-linolenic (18 : 3) acid, were also indetectable in these lipids. On the basis of these results, it appears that the arachidonic acid cascade is essentially absent in Drosophila head, including the brain and compound eyes. Since arachidonic acid is considered to be a key molecule in phosphatidylinositol turnover in the brain, it is of interest that Drosophila brain and eyes do not require arachidonic acid for their functions. 相似文献
11.
Lea-Smith DJ Martin KL Pyke JS Tull D McConville MJ Coppel RL Crellin PK 《The Journal of biological chemistry》2008,283(11):6773-6782
The cell walls of the Corynebacterineae, which includes the important human pathogen Mycobacterium tuberculosis, contain two major lipopolysaccharides, lipoarabinomannan (LAM) and lipomannan (LM). LAM is assembled on a subpool of phosphatidylinositol mannosides (PIMs), whereas the identity of the LM lipid anchor is less well characterized. In this study we have identified a new gene (Rv2188c in M. tuberculosis and NCgl2106 in Corynebacterium glutamicum) that encodes a mannosyltransferase involved in the synthesis of the early dimannosylated PIM species, acyl-PIM2, and LAM. Disruption of the C. glutamicum NCgl2106 gene resulted in loss of synthesis of AcPIM2 and accumulation of the monomannosylated precursor, AcPIM1. The synthesis of a structurally unrelated mannolipid, Gl-X, was unaffected. The synthesis of AcPIM2 in C. glutamicum DeltaNCgl2106 was restored by complementation with M. tuberculosis Rv2188c. In vivo labeling of the mutant with [3H]Man and in vitro labeling of membranes with GDP-[3H]Man confirmed that NCgl2106/Rv2188c catalyzed the second mannose addition in PIM biosynthesis, a function previously ascribed to PimB/Rv0557. The C. glutamicum Delta NCgl2106 mutant lacked mature LAM but unexpectedly still synthesized the major pool of LM. Biochemical analyses of the LM core indicated that this lipopolysaccharide was assembled on Gl-X. These data suggest that NCgl2106/Rv2188c and the previously studied PimB/Rv0557 transfer mannose residues to distinct mannoglycolipids that act as precursors for LAM and LM, respectively. 相似文献
12.
13.
PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER 总被引:7,自引:0,他引:7
下载免费PDF全文

Maeda Y Watanabe R Harris CL Hong Y Ohishi K Kinoshita K Kinoshita T 《The EMBO journal》2001,20(1-2):250-261
Glycosylphosphatidylinositol (GPI) acts as a membrane anchor of many cell surface proteins. Its structure and biosynthetic pathway are generally conserved among eukaryotic organisms, with a number of differences. In particular, mammalian and protozoan mannosyltransferases needed for addition of the first mannose (GPI-MT-I) have different substrate specificities and are targets of species- specific inhibitors of GPI biosynthesis. GPI-MT-I, however, has not been molecularly characterized. Characterization of GPI-MT-I would also help to clarify the topology of GPI biosynthesis. Here, we report a human cell line defective in GPI-MT-I and the gene responsible, PIG-M. PIG-M encodes a new type of mannosyltransferase of 423 amino acids, bearing multiple transmembrane domains. PIG-M has a functionally important DXD motif, a characteristic of many glycosyltransferases, within a domain facing the lumen of the endoplasmic reticulum (ER), indicating that transfer of the first mannose to GPI occurs on the lumenal side of the ER membrane. 相似文献
14.
M Tsukamura 《Microbiology and immunology》1988,32(8):769-774
Mycobacterium avium complex strains often contain considerably more numbers of viable bacterial units per mg wet weight than other mycobacteria, especially other slowly growing ones. This finding suggests that the life span of M. avium complex strains is often longer than the life span of other mycobacteria. The other mycobacteria, especially slowly growing ones seem to die more rapidly after their multiplication. 相似文献
15.
Evidence that the lipid carrier for N-acetylglucosamine is different from that for mannose in mung beans and cotton fibers
下载免费PDF全文

Cell-free enzyme particles from mung beans (Phaseolus aureus) or cotton (Gossypium hirsutum L.) fibers catalyze the incorporation of mannose from GDP-[14C]mannose and N-acetylglucosamine from UDP-[3H]-N-acetylglucosamine into polyprenyl-type lipids. These lipids have been synthesized and purified and the lipid moieties compared to each other as well as to dolichyl phosphate and to lipids isolated from similar mannoseand N-acetylglucosamine-containing lipids from liver and aorta.
The following lines of evidence indicate that in plants, the lipid carrier for N-acetylglucosamine is different from the lipid carrier for mannose: [List: see text]
We propose that the apparent difference in the lipid carrier for these two sugars may be a point of control of glycoprotein synthesis.
相似文献16.
Guanosine diphosphate (GDP) esters of 2-deoxy-D-glucose (2dGlc), 2-deoxy-2-fluoro-D-mannose (2FMan), 3-deoxy-D-mannose (3dMan), 4-deoxy-D-mannose (4dMan) and 6-deoxy-D-mannose (6dMan) have been synthesised and tested for their ability to act as inhibitors of dolichyl phosphate mannose synthesis (enzyme: GDP-mannose:dolichyl-phosphate mannosyltransferase, EC 2.4.1.83) in chick embryo cell microsomal membranes. The following order of efficiency was found with the apparent Ki in parentheses: GDP-6dMan (0.40 microM +/- 0.15) greater than GDP-3dMan (1.0 microM +/- 0.1) = GDP-2dGlc (1.3 microM +/- 0.2) greater than GDP-4dMan (3.1 microM +/- 0.1) GDP-2FMan (15 microM +/- 0). For comparison the Km for GDP-Man was 0.52 microM +/- 0.02 and the Ki for GDP was 56 microM +/- 2. These results indicate that the 6-hydroxyl group of mannose is not crucial for enzyme-substrate recognition, whereas the 2- and 3-hydroxyls may have some involvement. The 4-hydroxyl appears to be an important determinant for enzyme-substrate recognition in this mannosyltransferase. 相似文献
17.
Synthesis of a truncated Mr 46,000 mannose 6-phosphate receptor that is secreted and retains ligand binding. 总被引:3,自引:0,他引:3
下载免费PDF全文

M Wendland A Hille G Nagel A Waheed K von Figura R Pohlmann 《The Biochemical journal》1989,260(1):201-206
On purification, human fibroblast collagenase breaks down into two major forms (Mr22,000 and Mr 27,000) and one minor form (Mr 25,000). The most likely mechanism is autolysis, although the presence of contaminating enzymes cannot be excluded. From N-terminal sequencing studies, the 22,000-Mr fragment contains the active site; differential binding to concanavalin A shows the 25,000-Mr fragment is a glycosylated form of the 22,000-Mr fragment. These low-Mr forms can be separated by Zn2+-chelate chromatography. An activity profile of this column, combined with data from substrate gels, indicates no activity against collagen in the 22,000-Mr and 25,000-Mr forms, but rather, activity casein and gelatin. The 27,000-Mr form has no activity. The 22,000/25,000-Mr form can act as an activator for collagenase in a similar way to that reported for stromelysin. The activity of the 22,000/25,000-Mr form is not inhibited by the tissue inhibitor of metalloproteinases (TIMP). The 27,000-Mr C-terminal part of the collagenase molecule therefore appears to be important in maintaining the substrate-specificity of the enzyme, and also plays a role in the binding of TIMP. 相似文献
18.
Phosphatidylinositol 4-kinase III alpha (PI4KA) is an essential cofactor of hepatitis C virus (HCV) replication. We initiated this study to determine whether HCV directly engages PI4KA to establish its replication. PI4KA kinase activity was found to be absolutely required for HCV replication using a small interfering RNA transcomplementation assay. Moreover, HCV infection or subgenomic HCV replicons produced a dramatic increase in phosphatidylinositol 4-phosphate (PI4P) accumulation throughout the cytoplasm, which partially colocalized with the endoplasmic reticulum. In contrast, the majority of PI4P accumulated at the Golgi bodies in uninfected cells. The increase in PI4P was not observed after infection with UV-inactivated HCV and did not reflect changes in PI4KA protein or RNA abundance. In an analysis of U2OS cell lines with inducible expression of the HCV polyprotein or individual viral proteins, viral polyprotein expression resulted in enhanced cytoplasmic PI4P production. Increased PI4P accumulation following HCV protein expression was precluded by silencing the expression of PI4KA, but not the related PI4KB. Silencing PI4KA also resulted in aberrant agglomeration of viral replicase proteins, including NS5A, NS5B, and NS3. NS5A alone, but not other viral proteins, stimulated PI4P production in vivo and enhanced PI4KA kinase activity in vitro. Lastly, PI4KA coimmunoprecipitated with NS5A from infected Huh-7.5 cells and from dually transfected 293T cells. In sum, these results suggest that HCV NS5A modulation of PI4KA-dependent PI4P production influences replication complex formation. 相似文献
19.
Pulmonary surfactant protein A (SP-A) and mannose-binding protein A (MBP-A) are collectins in the C-type lectin superfamily. These collectins exhibit unique lipid binding properties. SP-A binds to dipalmitoyl phosphatidylcholine (DPPC) and galactosylceramide (GalCer) and MBP-A binds to phosphatidylinositol (PI). SP-A also interacts with alveolar type II cells. Monoclonal antibodies (mAbs PE10 and PC6) that recognize human SP-A inhibit the interactions of SP-A with lipids and alveolar type II cells. We mapped the epitopes for anti-human SP-A mAbs by a phage display peptide library. Phage selected by mAbs displayed the consensus peptide sequences that are nearly identical to 184TPVNYTNWYRG194 of human SP-A. The synthetic peptide GTPVNYTNWYRG completely blocked the binding of mAbs to human SP-A. Chimeric proteins were generated in which the rat SP-A region Thr174-Gly194 or the human SP-A region Ser174-Gly194 was replaced with the MBP-A region Thr164-Asp184 (rat ama4 or hu ama4, respectively). The mAbs failed to bind hu ama4. Rat ama4 bound to an affinity matrix on mannose-sepharose but lost all of the SP-A functions except carbohydrate binding and Ca2+-independent GalCer binding. Strikingly, the rat ama4 chimera acquired the PI binding property that MBP-A exhibits. This study demonstrates that the amino acid residues 174-194 of SP-A and the corresponding region of MBP-A are critical for SP-A-type II cell interaction and Ca2+-dependent lipid binding of collectins. 相似文献
20.
LL5beta is a phosphatidylinositol (3,4,5)-trisphosphate sensor that can bind the cytoskeletal adaptor,gamma-filamin 总被引:1,自引:0,他引:1
Paranavitane V Coadwell WJ Eguinoa A Hawkins PT Stephens L 《The Journal of biological chemistry》2003,278(2):1328-1335
We identified a potential phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) binding pleckstrin homology domain in the data bases and have cloned and expressed its full coding sequence (LL5beta). The protein bound PtdIns(3,4,5)P(3) selectively in vitro. Strikingly, a substantial proportion of LL5beta became associated with an unidentified intracellular vesicle population in the context of low PtdIns(3,4,5)P(3) levels produced by the addition of wortmannin or LY294002. In addition, expression of platelet-derived growth factor-receptor mutants unable to activate type 1A phosphoinositide 3-kinase (PI3K) or serum starvation in porcine aortic endothelial cells lead to redistribution of LL5beta to this vesicle population. Importantly, pleckstrin homology domain mutants of LL5beta that could not bind PtdIns(3,4,5)P(3) were constitutively localized to this vesicle population. At increased PtdIns(3,4,5)P(3) levels, LL5beta was redirected to a predominantly cytoplasmic distribution, presumably through a PI3K-dependent block on its targeting to the vesicular compartment. Furthermore, at high, hormone-stimulated PtdIns(3,4,5)P(3) levels, it became significantly plasma-membrane localized. The distribution of LL5beta is thus dramatically and uniquely sensitive to low levels of PtdIns(3,4,5)P(3) indicating it can act as a sensor of both low and hormone-stimulated levels of PtdIns(3,4,5)P(3). In addition, LL5beta bound to the cytoskeletal adaptor, gamma-filamin, tightly and in a PI3K-independent fashion, both in vitro and in vivo. This interaction could co-localize heterologously expressed gamma-filamin with GFP-LL5beta in the unidentified vesicles. 相似文献