首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was found recently that Hoechst 33258, a dsDNA fluorescent dye used in cytological studies, is an efficient inhibitor of the interaction of TATA-box-binding protein with DNA, DNA topoisomerase I, and DNA helicases. In addition it proved to be a radioprotector. Biological activity of Hoechst 33258 may be associated with dsDNA complexes of not only monomeric, but also dimeric type. In this work, the Hoechst 33258 interaction with poly(dG-dC).poly(dG-dC) was studied using UV-vis and fluorescent spectroscopy, circular and flow-type linear dichroism. It was found that Hoechst 33258 formed with poly(dG-dC).poly(dG-dC) complexes of three types, namely, monomeric, dimeric, and, apparently, tetrameric, and their spectral properties were studied. Complexes of monomeric and dimeric types competed with distamycin A, a minor groove ligand, for binding to poly(dG-dC).poly(dG-dC). We proposed that Hoechst 33258 both monomers and dimers form complexes of the external type with poly(dG-dC).poly(dG-dC) from the side of the minor groove.  相似文献   

2.
A new class of microgonotropen compounds (FIMGTs), which fluoresce upon binding to dsDNA, is introduced. The FMGTs consist of a minor groove binding moiety based upon Hoescht 33258 covalently attached to a polyamine chain capable of interacting with the phosphodiester backbone of dsDNA. The interactions of FMGTs with dsDNA were investigated by fluorescence and UV spectroscopy. Several different dsDNA oligomers were studied to determine the effect of binding site sequence on stoichiometric and binding affinity. The FMGTs were found to bind a dsDNA oligomer that contained the sequence 5'-AATTT-3' with FMGT:dsDNA stoichiometrics equal to 2:1 or 3:1. Hoechst 33258 bound the same dsDNA oligomer with a 1:1 stoichiometry. The second and third order equilibrium constants for complexation were determined to be Log(K1K2) = 17.9 M(-2) and Log(K1K2K3) = 26.1 M(-3), respectively, for two of strongest binding FMGTs. From thermal melting experiments deltaTm for Hoechst 33258 was determined to be 10 degrees C while the deltaTm values for FMGTs ranged from 20-26 degrees C indicating the greater stability of the latter.  相似文献   

3.
With the goal to design ligands recognizing extended regions on dsDNA, a covalent dimer of the fluorescent dye Hoechst 33258 [bis-HT(NMe)] composed of two dye molecules linked via the phenol oxygen atoms with a (CH2)3-N+ H(CH3)-(CH2)3 fragment was constructed using computer modeling and then synthesized. Its interactions with the double-stranded DNA (dsDNA) were studied by fluorescent and UV-Vis spectroscopy and circular (CD) and linear dichroism (LD). Based on variations in the affinity to the dsDNA, it was shown that complexes of three types are formed. The first type complexes result from binding of a bis-HT(NMe) monomer in the open conformation; in this case the ligand covers the total dsDNA turn and is located in the minor groove according to the positive value of CD at 370 nm. In addition, the ability to form bis-HT(NMe)-bridges between two dsDNA molecules, i.e., each of the two bis-HT(NMe) ends binds to two different dsDNA molecules, was demonstrated for the first type complexes. Spectral characteristics (maximal absorption at 362 nm, positive sign, and maximal value of CD at 370 nm) of the first type complexes conform to those of the specific Hoechst 33258 complex with poly[d(A-T)] x poly[d(A-T]. The second type complexes correspond to the bis-HT(NMe) sandwich (as an inter- or intramolecular) binding to dsDNA with stoichiometry > or = 5 bp. Thereby, a negative LD at 360 nm and the location of bis-HT(NMe) sandwiches in the minor groove of B form dsDNA seems contradictory. Spectral characteristics (maximal positive CD at 345 nm, a dramatic decrease in fluorescence intensity and the shift of its maximum to 490 nm) of these complexes favor a suggestion that this binding correlates to the formation of nonspecific dimeric Hoechst 33258 complex with dsDNA. The third type complexes are characterized by stoichiometry of one bis-HT(NMe) molecule per approximately 2 bp and the tendency to zero of LD values at 270 and 360 nm. We assume that in these complexes bis-HT(NMe) sandwich dimers are formed on dsDNA. The complexes of this type conform to the aggregation type complex of Hoechst 33258 with dsDNA. The ability of bis-HT(NMe) to cover the whole dsDNA turn or form bridges with two dsDNA upon the formation of the first type complexes essentially distinguishes it from Hoechst 33258, which can only occupy 5 bp and does not form such bridges. This specific property of bis-HT(NMe) may support new biological activities.  相似文献   

4.
Buoyant density of DNA in CsCl gradients with Hoechst 33258 (bisbenzimide) was investigated as a function of guanine plus cytosine content of the DNA (%GC; in mole percent). A formula for calculating %GC from the refractive index (nD) of the isopycnic CsCl/Hoechst 33258 solution over the range of 0-75 %GC was established: %GC = 351762.28 X nD - 123778.66 X nD2 - 249789.47 (the coefficients must not be rounded off). The shape of this curve indicates that under these conditions, in contrast to dilute buffers, Hoechst 33258 binds to single AT base pairs on DNA. Resolution of DNA bands in CsCl/Hoechst 33258 gradients is 1.6 to 2.1 times better than comparative CsCl gradients without the dye. Potential application to %GC determination is discussed.  相似文献   

5.
BACKGROUND: The chromosomal stain, Hoechst 33258, binds to the minor groove of the DNA double helix and specifically recognizes a run of four A-T base pairs. Extensive biochemical and biophysical studies have been aimed at understanding the binding of the dye to DNA at the atomic level. Among these studies there have been several crystal structure determinations and some preliminary structural studies by NMR. RESULTS: On the basis of our own previously reported NMR data, we have now determined the three-dimensional solution structure of the 1:1 complex between Hoechst 33258 and the self-complementary DNA duplex d(GTGGAATTCCAC)2. Two coexisting families of con formers, which exhibit differences in their intermolecular hydrogen bonding pattern, were found and the two terminal rings of the dye displayed greater internal mobility than the rest of the molecule. CONCLUSIONS: The observed multiple ligand-binding modes in the complex between Hoechst 33258 and DNA and differential internal mobility along the bound ligand provide a novel, dynamic picture of the specific inter actions between ligands that bind in the minor groove and DNA. The dynamic state revealed by these studies may account for some of the significant differences previously observed between different crystal structures of Hoechst 33258 complexed with a different DNA duplex, d(CGCGAATTCGCG)2.  相似文献   

6.
A hairpin pyrrole polyamide conjugated to a Hoechst 33258 (Ht) analogue, PyPyPy-gamma-PyPyPy-gamma-Ht, was synthesized on solid-phase by adaptation of an Fmoc technique using a series of PyBOP/HOBt mediated coupling reactions. Sequence selectivity and complex stabilities were characterized by spectrofluorometric titrations and thermal melting studies. The polyamide of the conjugate was observed to bind in a hairpin motif forming 1:1 conjugate:dsDNA complexes. The conjugate is able to recognize nine contiguous A/T bps, discriminating from the sequences containing fewer than nine contiguous A/T bps.  相似文献   

7.
A series of hairpin pyrrole/imidazole polyamides linked to a Hoechst 33258 (Ht) analogue (5-7) were synthesized on solid-phase by adopting an Fmoc technique using a series of PyBOP/HOBt mediated coupling reactions. The dsDNA binding properties of Ht-polyamides 5-7 were determined by thermal denaturation experiments. Hairpin Ht-polyamides 5-7 bound to dsDNA sequences 16 and 18 show DeltaTm values that are 14-18 degrees higher than linear Ht-polyamides bound to the same sequences. All three Ht-polyamides were found to be selective for their 9-bp match dsDNA sequences, supporting a relative stronger interaction of an Im/Py anti-parallel dimer with an appropriately positioned G/Cbp rather than sequences containing only A/Tbps. In addition, Ht-polyamides 5 and 7 showed a 20-fold preference for a properly placed G/Cbp over a C/Gbp, while 6 showed a 10-fold preference.  相似文献   

8.
Equilibrium binding experiments using fluorescence and absorption techniques have been performed throughout a wide concentration range (1 nM to 30 microM) of the dye Hoechst 33258 and several DNAs. The most stable complexes found with calf thymus DNA, poly[d(A-T)], d(CCGGAATTCCGG), and d(CGCGAATTCGCG) all have dissociation constants in the range (1-3) X 10(-9) M-1. Such complexes on calf thymus DNA occur with a frequency of about 1 binding site per 100 base pairs, and evidence is presented indicating a spectrum of sequence-dependent affinities with dissociation constants extending into the micromolar range. In addition to these sequence-specific binding sites on the DNA, the continuous-variation method of Job reveals distinct stoichiometries of dye-poly[d(A-T)] complexes corresponding to 1, 2, 3, 4, and 6 dyes per 5 A-T base pairs and even up to 1 and 2 (and possibly more) dyes per backbone phosphate. Models are suggested to account for these stoichiometries. With poly[d(G-C)] the stoichiometries are 1-2 dyes per 5 G-C pairs in addition to 1 and 2 dyes per backbone phosphate. Thermodynamic parameters for formation of the tightest binding complex between Hoechst 33258 and poly[d(A-T)] or d-(CCGGAATTCCGG) are determined. Hoechst 33258 binding to calf thymus DNA, chicken erythrocyte DNA, and poly[d(A-T)] exhibits an ionic strength dependence similar to that expected for a singly-charged positive ion. This ionic strength dependence remains unchanged in the presence of 25% ethanol, which decreases the affinity by 2 orders of magnitude. In addition, due to its strong binding, Hoechst 33258 easily displaces several intercalators from DNA.  相似文献   

9.
The binding of Hoechst 33258 and DAPI to five different (A/T)4 sequences in a stable DNA hairpin was studied exploiting the substantial increase in dye fluorescence upon binding. The two dyes have comparable affinities for the AATT site (e.g. association constant K(a)=5.5 x 10(8) M(-1) for DAPI), and their affinities decrease in the series AATT > TAAT approximately equal to ATAT > TATA approximately equal to TTAA. The extreme values of K(a) differ by a factor of 200 for Hoechst 33258 but only 30 for DAPI. The binding kinetics of Hoechst 33258 were measured by stopped-flow under pseudo-first order conditions with an (A/T)4 site in excess. The lower-resolution experiments can be well represented by single exponential processes, corresponding to a single-step binding mechanism. The calculated association-rate parameters for the five (A/T)4 sites are similar (2.46 x 10(8) M(-1) s(-1) to 0.86 x 10(8) M(-1) s(-1)) and nearly diffusion-controlled, while the dissociation-rate parameters vary from 0.42 s(-1) to 96 s(-1). Thus the association constants are kinetically controlled and are close to their equilibrium-determined values. However, when obtained with increased signal-to-noise ratio, the kinetic traces for Hoechst 33258 binding at the AATT site reveal two components. The concentration dependencies of the two time constants and amplitudes are consistent with two different kinetically equivalent two-step models. In the first model, fast bimolecular binding is followed by an isomerization of the initial complex. In the second model, two single-step associations form two complexes that mutually exclude each other. For both models the four reaction-rate parameters are calculated. Finally, specific dissociation kinetics, using poly[d(A-5BrU)], show that the kinetics are even more complex than either two-step model. We correlate our results with the different binding orientations and locations of Hoechst 33258 in the DNA minor groove found in several structural studies in the literature.  相似文献   

10.
A benzimidazole derivative, Hoechst 33258 can induce decondensation of constitutive heterochromatin in the mouse derived L cell chromosomes when the compound is given in sufficiently high concentration (40 micrograms/ml) to the L cell culture. Hoechst 33258 at low concentration (1 micrograms/ml, 16 h) cannot produce this effect on L cell chromosomes. Bromodeoxyuridine (BUdR) incorporation for one cell cycle simultaneous with the Hoechst 33258 treatment at low concentration could decondense heterochromatin segments in metaphase chromosomes. The heterochromatin decondensation, however, was asymmetric; it was observed only on one chromatid and the other of a chromosome remained in condensed state. The observation of asymmetric decondensation of heterochromatin by Hoechst 33258 after BUdR incorporation for one cell cycle, the association of A-T rich satellite DNA to mouse heterochromatin, and available data on the specific binding of Hoechst 33258 to A-T base pairs of DNA and on the higher affinity of the compound to BUdR substituted DNA than to ordinary DNA implied that the binding of Hoechst 33258 molecules to A-T rich satellite DNA is the cause of heterochromatin decondensation.  相似文献   

11.
Using Allium cepa chromosomes after 5-bromo, 2'-deoxyuridine (BrdU) incorporation, we studied several acid and basic dyes and fluorochromes for their potential as substitutes for 33258 Hoechst in the fluorescence-plus-Giemsa (FPG) technique. All of the dyes and fluorochromes investigated showed a photosensitizing capacity which was slightly lower than 33258 Hoechst in the cases of daunomycin, phloxin, fluorescein, thioflavine T and nuclear fast red, and somewhat higher in the case of eosin Y. Observation and cytophotometric analysis of differentially Giemsa-stained sister chromatids when eosin Y was used as the photosensitizing agent revealed the unsubstituted chromatid to be reddish violet in colour (absorption maximum, 550 nm), while the BrdU-substituted chromatid was blue or pale violet blue (absorption maximum, 580 nm). These results indicate that eosin Y is a useful photosensitizing dye which could be used as a substitute for 33258 Hoechst in the FPG staining technique.  相似文献   

12.
Three new bisbenzimidazole (BBI) compounds, which differ from Hoechst 33258 mainly by substitution of a N-dimethylaminopro-pylcarboxamide group in place of the N-methyl-piperazine ring, were studied for their DNA- and AT-base pair specificity as well as for their ability to be quenched by incorporated 5-bromodeoxy-uridine (BrdU). Each of them had DNA binding specificity comparable to or greater than that of Hoechst 33258 and each had a greater specificity for AT-rich regions than did Hoechst 33258. The dependence of fluorescence of new dyes on the BrdU-incorporation into DNA is different from that of Hoechst 33258 and related compounds with piperazine ring. The quenching effect is much weaker, and two of the new compounds (BBI-1 and BBI-2) even show somewhat enhanced binding (fluorescence) at lower concentrations. Certain BBI dyes without piperazine ring may have some advantage over Hoechst for accurate DNA [AT-specific] measurements. The piperazine ring appears to play an important role in the yet unknown mechanism of Hoechst quenching by incorporated BrdU.  相似文献   

13.
The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M?1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.  相似文献   

14.
An analogue of the DNA binding compound Hoechst 33258, which has the para hydroxyl group altered to be at the meta position, together with the replacement of one benzimidazole group by pyridylimidazole, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The X-ray structure has been determined at 2.2 A resolution and refined to an R factor of 20.1%. The ligand binds in the minor groove at the sequence 5'-AATTC with the bulky piperazine group extending over the CxG base pair. This binding is stabilised by hydrogen bonding and numerous close van der Waals contacts to the surface of the groove walls. The meta-hydroxyl group was found in two distinct orientations, neither of which participates in direct hydrogen bonds to the exocyclic amino group of a guanine base. The conformation of the drug differs from that found previously in other X-ray structures of Hoechst 33258-DNA complexes. There is significant variation between the minor groove widths in the complexes of Hoechst 33258 and the meta-hydroxyl derivative as a result of these conformational differences. Reasons are discussed for the inability of this derivative to actively recognise guanine.  相似文献   

15.
This study was designed to assess whether nucleic acid stains such as propidium iodide and Hoechst 33258 and the cytosolic stain eosin identified equivalent proportions of non-viable cells. Sub-samples of boar spermatozoa stored for up to 72 h, and frozen bull spermatozoa stored in straws and thawed before staining, were exposed to either propidium iodide or Hoechst 33258 alone or in combination. Additional sub-samples were stained with eosin-nigrosin and subsequently with Giemsa. The proportion of non-viable cells identified by propidium iodide alone was equivalent to that observed when it was used in combination with the other fluorescent probe. Similar results were observed for Hoechst 33258. However, direct microscopic examination of sub-samples exposed to both stains revealed that a proportion of spermatozoa stained with propidium iodide did not incorporate Hoechst 33258. This was found consistently in boar and bull spermatozoa under the different experimental conditions used. Quantification showed that the proportion of propidium iodide-positive cells was significantly higher than Hoechst 33258-positive cells. Furthermore, the proportion of propidium iodide-positive cells was higher than cells stained with eosin, but no differences were found between the number of cells stained with Hoechst 33258 or eosin. The proportion of cells stained with propidium iodide was positively correlated with the proportion stained with either Hoechst 33258 or eosin, despite the observation that more cells incorporated propidium iodide. Taken together, these results indicate that there are differences in the ability of fluorescent probes to identify non-viable sperm cells and that this should be considered when staining protocols are used to analyse sperm viability, or when viability is used as a discriminating factor in functional studies, such as those related to acrosomal exocytosis.  相似文献   

16.
Quenching of the fluorescence of DNA-bound Hoechst 33258 in erythroid precursors was studied by flow cytometry and cytochemistry. This quenching artifact may affect the measurement of ploidy in specific cases. The bone marrow cells of two patients with hemolytic disease and active erythropoiesis contained subpopulations of cells with an apparent hypodiploid DNA content as measured by flow cytometry of paraformaldehyde-fixed cells stained with Hoechst 33258. No aneuploidy was detected in either of the two cases when cells were stained with mithramycin or 7-aminoactinomycin D. Cells exhibiting reduced Hoechst 33258 fluorescence expressed glycophorin A and low amounts of CD36, and were therefore erythroid precursors. In one case studied, the number of cells with reduced Hoechst 33258 fluorescence and glycophorin A expressed agreed well with the number of cells containing nuclear hemoglobin. In the other case, hemoglobin was present in a significant proportion of nucleated cells. Calculated values for the efficiency of resonance energy transfer from Hoechst 33258 to hemoglobin were in accordance with the observed levels of quenching (approximately 10%). However, the results could also be explained by hemoglobin reabsorption of Hoechst 33258 fluorescence. Nuclei stained with Hoechst 33258 showed uniform fluorescence, probably due to extraction of hemoglobin during the isolation procedure.  相似文献   

17.
T Stokke  H B Steen 《Cytometry》1986,7(3):227-234
The binding of Hoechst 33258 to rat thymocytes, human lymphocytes, and NHIK 3025 tissue culture cells was studied by measuring the fluorescence and light scattering of the cells as functions of dye concentration using flow cytometry. The results indicated that there were two different modes of binding of Hoechst 33258 to chromatin in situ at physiological pH. Type 1 binding, which dominated at total dye/phosphate ratios below 0.1 (0.15, M), was characterized by a binding constant of the order 10(7) M-1 and fluorescence with high quantum yield. Further binding of the dye resulted in a reduced blue/green fluorescence ratio, indicating that secondary sites were occupied. Binding at secondary sites above a certain density (0.1 less than or equal to bound dye/phosphate less than or equal to 0.2) induced strong quenching of fluorescence and precipitation of chromatin. Precipitation was quantitated by measuring the large-angle (greater than or equal to 15 degrees) light scattering of the cells above 400 nm, i.e., outside the Hoechst 33258/DNA absorption spectrum, as a function of dye concentration. In contrast, the light scattering at 365 nm, i.e., within the absorption spectrum of Hoechst 33258/DNA, was independent of the total dye/phosphate ratio. The coefficient of variation of the light-scattering (greater than or equal to 400 nm) histograms decreased with Hoechst 33258 concentration. Type 2 binding to histone-depleted chromatin was cooperative (Hill-coefficient approximately 2) and the apparent binding constant was 2-3 X 10(5) M-1 as determined from quenching and precipitation data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Application of the fluorescent DNA-intercalator propidium iodide for stabilization of the mitotic chromosome structure during isolation of chromosomes from V79 Chinese hamster cells and subsequent staining with the fluorochromes 33258 Hoechst or DAPI allowed bivariate flow karyotyping of isolated chromosomes. Fluorescence of 33258 Hoechst bound to isolated chromosomes containing 5-bromodeoxyuridine (BrdUrd) was quenched in comparison with the fluorescence of control chromosomes. Despite structural relationship and similarity of both absorption and fluorescence spectra of DAPI and 33258 Hoechst, reduction of fluorescence of DAPI-stained isolated chromosomes was not observed, by contrast with findings in conventional cytological metaphase preparations. It could be obtained, however, by preirradiation of the chromosomes with near-UV in the presence of DAPI. This led to a progressive destruction of the chromosomes. Destruction also occurred without BrdUrd, though at a slower rate. Preirradiation of chromosomes in the presence of 33258 Hoechst hardly affected the integrity of the chromosomes. Preirradiation of a 33258 Hoechst solution and its subsequent use as a stain resulted in a considerably decreased fluorescence of chromosomes. For DAPI this effect was small. Thus, whereas 33258 Hoechst itself is much more sensitive to near-UV irradiation than DAPI, DAPI bound to DNA in chromosomes renders the DNA much more sensitive to irradiation than 33258 Hoechst bound to DNA. Presumably, these differences can at least partly be reduced to the different molecular sizes of the dyes.  相似文献   

19.
An analogue of the DNA-binding compound Hoechst 33258, in which the piperazine ring has been replaced by an imidazoline group, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The structure has been solved by X-ray diffraction analysis and has been refined to an R-factor of 19.7% at a resolution of 2.0 A. The ligand is found to bind in the minor groove, at the central four AATT base pairs of the B-DNA double helix, with the involvement of a number of van der Waals contacts and hydrogen bonds. There are significant differences in minor groove width for the two compounds, along much of the AATT region. In particular this structure shows a narrower groove at the 3' end of the binding site consistent with the narrower cross-section of the imidazole group compared with the piperazine ring of Hoechst 33258 and therefore a smaller perturbation in groove width. The higher binding affinity to DNA shown by this analogue compared with Hoechst 33258 itself, has been rationalised in terms of these differences.  相似文献   

20.
Summary Application of the fluorescent DNA-intercalator propidium iodide for stabilization of the mitotic chromosome structure during isolation of chromosomes from V79 Chinese hamster cells and subsequent staining with the fluorochromes 33258 Hoechst or DAPI allowed bivariate flow karyotyping of isolated chromosomes. Fluorescence of 33258 Hoechst bound to isolated chromosomes containing 5-bromodeoxyuridine (BrdUrd) was quenched in comparison with the fluorescence of control chromosomes. Despite structural relationship and similarity of both absorption and fluorescence spectra of DAPI and 33258 Hoechst, reduction of fluorescence of DAPI-stained isolated chromosomes was not observed, by contrast with findings in conventional cytological metaphase preparations. It could be obtained, however, by preirradiation of the chromosomes with near-UV in the presence of DAPI. This led to a progressive destruction of the chromosomes. Destruction also occurred without BrdUrd, though at a slower rate. Preirradiation of chromosomes in the presence of 33258 Hoechst hardly affected the integrity of the chromosomes. Preirradiation of a 33258 Hoechst solution and its subsequent use as a stain resulted in a considerably decreased fluorescence of chromosomes. For DAPI this effect was small. Thus, whereas 33258 Hoechst itself is much more sensitive to near-U.V irradiation than DAPI, DAPI bound to DNA in chromosomes renders the DNA much more sensitive to irradiation than 33258 Hoechst bound to DNA. Presumably, these differences can at least partly be reduced to the different molecular sizes of the dyes.In honour of Prof. P. van Duijn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号