首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Earlier studies had failed to show the presence of capillaries between the white fibres of pigeon pectoralis muscle. In this paper, data are reported for the first time documenting that these capillaries occur in both intra- and inter-fasicular areas of the muscle. Fresh frozen sections of pigeon pectoralis major muscle were incubated for alkaline ATPase reaction following pretreatment with different EDTA solutions (4.3 mM, pH 4.3). The results showed the existence of an inherent heterogeneity of capillaries. The capillaries of white fibres stained intensely for K/Mg2–-EDTA or Mg2+-EDTA pre-incubated ATPase; the capillaries of red fibres stained poorly. Both white fibre and red fibre capillaries were examined ultrastructurally in the non-perfused pigeon pectoralis muscle. It is suggested that a possible correlation exists between the distinctive metabolic and mechanical characteristics of the Type II white, glycolytic, fast-twitch fast-fatigue muscle fibres and the high ATPase activity of their capillaries.  相似文献   

2.
M A Khan 《Histochemistry》1978,55(1):75-79
On the basis of the histochemical activity of succinic dehydrogenase, only two fibre-types are distinguished in pigeon pectoralis major muscle. These are narrow "Red" and broad "White". The histochemical activity of myofibrillar ATPase was studied in these two distinct fibre-types. Both fibre-types showed high activity for the ATPase. "Red" fibres of pigeon pectoralis were not alkali-labile, at incubation pH 9.4, as were the "Type I" fibres of both avian and mammalian muscles. Again unlike "Type I" fibres, the "Red" fibres of pigeon pectoralis lacked the characteristic activation of acid-preincubated ATPase reaction. Pigeon pectoralis "Red" fibres are known to possess some characteristics of fast-twitch fibres (e.g. high fat, considerable phosphorylase, fibrillenstruktur myofibrillar arrangement, focal "en plaque" pattern of nerve endings). It is emphasized, therefore, that the pigeon pectoralis "Red" fibres are not equivalent to "Type I or slow-twitch", muscle fibres, but they are possibly "fast-twitch fatigue resistent or Type II Red" muscle fibres.  相似文献   

3.
The purpose of this study was to find the effect of dexamethasone on the myosin heavy chain (MyHC) isoforms' composition in different skeletal muscles and glycolytic (G) fibres in relation with their synthesis rate and degradation of MyHC isoforms by alkaline proteinases. Eighteen-week-old male rats of the Wistar strain were treated with dexamethasone (100 microg/100 g bwt) during 10 days. The forelimb strength decreased from 9.52 to 6.19 N (P<0.001) and hindlimb strength from 15.54 to 8.55 N (P<0.001). Daily motor activity decreased (total activity from 933 to 559 and ambulatory activity from 482 to 226 movements/h, P<0.001). The degradation rate of muscle contractile proteins increased from 2.0 to 5.9% per day (P<0.001), as well as the myosin heavy chain IIB isoform degradation with alkaline proteinase in fast-twitch (F-T) muscles (12 +/- 0.9%; P<0.05) and glycolytic muscle fibres (15 +/- 1.1%; P<0.001). The synthesis rate of MyHC type II isoforms decreased in Pla muscles (P<0.05) and MyHC IIA (P<0.05) and IIB in EDL muscle and G fibres (P<0.001). The relative content of MyHC IIB isoform decreased in F-T muscles (P<0.001) and in G fibres (P<0.01), and the relative content of IIA and IID isoforms increased simultaneously. Dexamethasone decreased the MyHC IIB isoform synthesis rate and increased the sensibility of MyHC IIB isoform to alkaline proteinase, which in its turn led to the decrease of MyHC IIB isoform relative content in F-T muscles with low oxidative potential and G muscle fibres.  相似文献   

4.
A Chatonnet  F Bacou 《FEBS letters》1983,161(1):122-126
Molecular forms of acetylcholinesterase (AChE) were examined in various skeletal muscles of the chicken and the pigeon. In chicken pectoralis m., AChE was found to be restricted to endplate containing segments, and no asymmetric form could be detected in aneural samples. In the chicken muscles studied, a relation has been established between globular (G1,G2,G4) forms or asymmetric (A8,A12) forms, and muscle fibre types. Asymmetric forms are preponderant in fast-twitch muscles, whereas in slow tonic muscles 80% of the AChE activity is due to globular forms. However, comparison with pigeon muscles shows that AChE chicken muscle patterns may not be generalized.  相似文献   

5.
Summary Fibre types, fibre areas and capillary supply in the pectoralis muscle of fifteen passerines with four different patterns of migratory behaviour have been studied. The predominant fibre type was a fast-twitch oxidative-glycolytic which was the only fibre type present in all species, except in the robin and the blackbird where a fast fibre with intermediate oxidative capacity and a fast glycolytic fibre were also found. There was a significant difference in fibre areas between birds with different migratory strategies, with the long-distance migratory group having the smallest fibres. This also led to higher capillary densities, shorter diffusion distances and, consequently, more capillaries around the fibres relative to fibre area in this group. This indicates an adaptation in the morphology of the pectoralis muscle to differences in migration strategies. In the robin, the proportion of the intermediate fibre was significantly greater during the breeding season than during migration. Seasonal differences in fibre areas and capillary supply within a species were also seen, but no definite trends were detectable.Abbreviations CC capillary/fibre contacts - CCA mean number of capillaries in contact with a fibre relative to fibre cross-sectional area - MD mean diffusion length - CD capillary density - FG fast-twich glycolytic - FOG fast-twitch oxidative-glycolytic  相似文献   

6.
Combined methodologies of immunohistochemistry, histochemistry and photometric image analysis were applied: (1) to characterise control equine skeletal muscle fibres according to their myosin heavy chain (MyHC) composition and (2) to determine on a fibre-to-fibre basis the correlation between contractile [i.e. MyHC(s), myofibrillar ATPase (mATPase) and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoforms], metabolic [i.e. succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) activities, glycogen and phospholamban (PLB) contents], and morphological [i.e. cross-sectional area (CSA), capillary and nuclear densities] features of individual myofibres. An accurate delineation of MyHC-based fibre types was obtained with the immunohistochemical method developed. This protocol showed a high sensitivity and objectivity to delineate hybrid fibres with overwhelming dominance of one MyHC isoform and, furthermore, it allowed a semiquantitative delineation of fast hybrid fibres according to the predominant MyHC isoform expressed. The phenotypic differences in contractile, metabolic and morphological properties seen between fibre types were related to MyHC content. Slow fibres had the lowest mATPase activity (related to shortening velocity), the highest SDH activity (oxidative capacity), the lowest GPD activity (glycolytic metabolism) and glycogen content, the smallest CSA, the greatest capillary and nuclear densities, and expressed slow SERCA isoform and PLB, but not the fast SERCA isoform. The reverse pattern was true for pure IID/X fibres, and type IIA fibres had intermediate properties. Hybrid IIAD/X fibres had mean values intermediate to those of their respective pure phenotypes. Discrimination of fibres according to their MyHC content was possible on the basis of their contractile and non-contractile profiles. These intrafibre interdependencies suggest that, even when controlled by different mechanisms, myofibres of control horses exhibit a high degree of co-ordination in their physiological, biochemical and anatomical features.  相似文献   

7.
Twenty 4-week-old Wistar rats exercised voluntarily in running wheels each day for 45 days. Fibre type composition, fibre cross-sectional area and the number of capillaries around a fibre of the slow-twitch soleus and fast-twitch plantaris muscles were examined and compared with animals which had no access to running wheels. The exercise group had a higher percentage of fast-twitch oxidative glycolytic (FOG) fibres and a lower percentage of fast-twitch glycolytic (FG) fibres in the deep portion of the plantaris muscle. The area of FOG fibres in the surface portion of the plantaris muscle was also greater in the exercise group. In the exercised animals, there was a positive relationship between the running distance and the area of FOG fibres in both the deep and surface portions of the plantaris muscle. In addition, the running distance correlated positively with the percentage of FOG fibres and negatively with that of FG fibres in the deep portion of the plantaris muscle. There were no relationships between the running distance and fibre type composition, or fibre area and capillary supply in the soleus muscle. These results suggested that the increase in the percentage and area of FOG fibres in the fast-twitch muscle was closely related to voluntary running.  相似文献   

8.
beta-Adrenoceptor agonists are reported to induce skeletal muscle hypertrophy and hence serve as valuable adjunct to the treatment of wasting disorders. In the present study, we attempted to find out whether metabolic and physiologic characteristics of fibres are important in determining skeletal muscle response to clenbuterol (an adrenergic receptor agonist) therapy, as proposed in the treatment of wasting disorders. The treatment of mice with clenbuterol (2 mg/kg body wt for 30 days) resulted in skeletal muscle hypertrophy, more common amongst fast-twitch glycolytic fibres/muscle, with increase in body mass and a parallel rise in muscle mass to body mass ratio. Measurement of fibre diameters in soleus (rich in slow-twitch oxidative fibres), ALD or anterior latissimus dorsi (with a predominance of fast-twitch glycolytic fibres) and gastrocnemius (a mixed-type of muscle) from clenbuterol-treated mice for 30 days revealed noticeable increase in the per cent population of narrow slow-twitch fibre and a corresponding decline in white-type or fast-twitch glycolytic fibres in gastrocnemius and ALD. As revealed by counting of muscle cells in soleus, narrow red fibres declined with corresponding increase in white-type glycolytic fibres population. A significant decline in the succinic dehydrogenase activity was observed, thereby suggesting abnormality in oxidative activity of skeletal muscles in response to clenbuterol therapy.  相似文献   

9.
Parvalbumin in mouse muscle in vivo and in vitro   总被引:1,自引:0,他引:1  
Parvalbumin is a cytosolic calcium-binding protein found in adult fast-twitch mammalian muscle. Using an antibody to paravalbumin, we have shown that its distribution in adult mouse muscles is associated with certain fibre types. It is absent from slow-twitch type 1 fibres, is absent or at low levels in fast-twitch type 2A fibres, but is present at moderate or high levels in fast-twitch type 2B fibres. When adult mouse muscle is cultured with embryonic mouse spinal cord, the regenerated fibres become innervated, express the adult fast isoform of myosin heavy chain and appear histochemically as fast-twitch fibres. We therefore investigated whether these apparently mature fibres also contained parvalbumin. Parvalbumin was not found in any fibres of twenty mature cultures, suggesting that neurotrophic activity in the absence of specific adult nerve activity patterns was insufficient to cause the expression of parvalbumin in the cultures.  相似文献   

10.
The effects were investigated of high intensity short duration exercise and anabolic steroid treatment on the medial gastrocnemius muscle of female rats. Twelve rats were divided equally into four groups, exercise with and without steroid administration and sedentary with and without steroid administration. Animals were made to swim for 5 weeks, 6 days.week-1. Muscle fibres were classified as slow-twitch (ST), fast-twitch oxidative glycolytic (FOG) and fast-twitch glycolytic (FG). Muscle fibre size was measured as the equivalent circle diameter. Exercise (P less than 0.001) and steroid (P less than 0.05) treatments alone, significantly elevated FOG and decreased FG fibre proportions. Overall proportions of fast-twitch and ST muscle fibres did not vary with any of the treatments. Significant differences in the proportion of muscle fibres were found to exist between different areas within the gastrocnemius muscle (P less than 0.05). Exercise and steroid treatments alone did not alter muscle fibre diameters. Combined exercise and steroid treatments did significantly increase ST fibre diameters (P less than 0.05). Exercise only treatment resulted in significant increases in the number of capillaries surrounding ST fibre (P less than 0.05) and FOG fibre (P less than 0.01) types. In conclusion the main finding of this study indicated that anabolic steroids in conjunction with high intensity swimming instigated ST fibre hypertrophy. Exercise and steroid only treatments significantly elevated FOG fibre proportions while FG fibre proportions diminished. Exercise only treatment resulted in significant increases in the number of capillaries surrounding both ST and FOG fibre types.  相似文献   

11.
Electrophoresis, immunoblots, immunohistochemistry and image analysis methods were applied to characterise canine trunk and appendicular muscle fibres according to their myosin heavy chain (MyHC) composition and to determine, on a fibre-to-fibre basis, the correlation between contractile [MyHC (s), myofibrillar ATPase (mATPase) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) isoforms], metabolic [succinate dehydrogenase (SDH) and glycerol-3-phosphate dehydrogenase (GPDH) activities and glycogen and phospholamban (PLB) content] and morphological (cross-sectional area and capillary and nuclear densities) features of individual myofibres. An accurate delineation of MyHC-based fibre types was obtained with the developed immunohistochemical method, which showed high sensitivity and objectivity to delineate hybrid fibres with overwhelming dominance of one MyHC isoform. Phenotypic differences in contractile, metabolic and morphological properties seen between fibre types were related to MyHC content. All canine skeletal muscle fibre types had a relatively high histochemical SDH activity but significant differences existed in the order IIA>I>IIX. Mean GPDH was ranked according to fibre type such that I<IIA<IIX. Type IIA fibres were the smallest, type IIX fibres the largest and type I of intermediate size. Capillary and nuclear density decreased in the order IIA>I>IIX. Hybrid fibres, which represented nearly one third of the whole pool of skeletal muscle fibres analysed, had mean values intermediate between their respective pure phenotypes. Slow fibres expressed the slow SERCA isoform and PLB, whereas type II fibres expressed the fast SERCA isoform. Discrimination of myofibres according to their MyHC content was possible on the basis of their contractile, metabolic and morphological features. These intrafibre interrelationships suggest that myofibres of control dogs exhibit a high degree of co-ordination in their physiological, biochemical and morphological characteristics. This study demonstrates that canine skeletal muscle fibres have been misclassified in numerous previous studies and offers useful baseline data and new prospects for future work on muscle-fibre-typing in canine experimental studies.  相似文献   

12.
The skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging‐ and gender‐related effects on myonuclei organization and the MND size in single muscle fibres from six young (21–31 years) and nine old men (72–96 years), and from six young (24–32 years) and nine old women (65–96 years), using a novel image analysis algorithm applied to confocal images. Muscle fibres were classified according to myosin heavy chain (MyHC) isoform expression. Our image analysis algorithm was effective in determining the spatial organization of myonuclei and the distribution of individual MNDs along the single fibre segments. Significant linear relations were observed between MND size and fibre size, irrespective age, gender and MyHC isoform expression. The spatial organization of individual myonuclei, calculated as the distribution of nearest neighbour distances in 3D, and MND size were affected in old age, but changes were dependent on MyHC isoform expression. In type I muscle fibres, average NN‐values were lower and showed an increased variability in old age, reflecting an aggregation of myonuclei in old age. Average MND size did not change in old age, but there was an increased MND size variability. In type IIa fibres, average NN‐values and MND sizes were lower in old age, reflecting the smaller size of these muscle fibres in old age. It is suggested that these changes have a significant impact on protein synthesis and degradation during the aging process.  相似文献   

13.
M A Khan 《Histochemistry》1976,50(2):103-110
In this study frozen sections of avian striated muscles were incubated for mitochondrial alpha-glycerophosphate de hydrognease (alpha=GPD) reaction, and the effect of menadione, phenazine methosulfate (PMS) or phenazine ethosulfate (PES) as intermediate electron acceptors was evaluated. Under histochemical conditions, PMS or PES-linked alpha-GPD reaction was poor in the chicken posterior latissimus dorsi and chicken pectoralis muscles. However, PMS or PES-linked alpha-GPD reaction was present characteristically in the subsarcolemmal mitochondria of the "broad white" fibres of the pigeon pectoralis muscle only; the subsarcolemmal mitochondria of the narrow red fibres lacked such a reaction pattern. The above reaction pattern, however, differed when compared with the menadione-linked alpha-GPD reaction. The present histochemical evidence suggests the existence of an inherent heterogeneity in the mitochondrial populations of the different avian striated muscle fibres studied.  相似文献   

14.
Muscovy ducks display marked sexual dimorphism. The aim of our study was to analyse the consequences of dimorphism on muscular growth and, particularly, on the myofibrillar typology of the Pectoralis major and Sartorius muscles. In the Pectoralis muscle, we only found two fibre types: red fast-twitch oxido-glycolytic fibres (about 90%) and white fast-twitch glycolytic fibres. In the Sartorius, the innermost part contained both white (30%) and red (55%) fast fibres and red slow-twitch oxidative fibres (15%). For both muscles, neither sex nor age had a significant effect on the percentage of each fibre type. The cross-sectional areas of fibres increased with age. The difference in muscle weight observed between sexes could be explained by a higher size and/or total fibre number in the male muscles.  相似文献   

15.
In chicken, the main characteristic properties of muscle fibre types in slow anterior (ALD) and fast posterior (PLD) latissimus dorsii are acquired during post-hatching development. At day 4 it becomes possible to distinguish between alpha' and beta' fibre types in ALD muscle. At the same time, mATPase staining and NADH-TR activity permit recognition of alpha w and alpha R fibres within PLD muscle. During further development, muscle fibre typology progressively changes towards the adult slow and fast type. Chronic stimulation at a slow rhythm (5 Hz) of PLD prevents the change in relative proportions of alpha R and alpha W fibres within the muscle that occurs in normal post-hatching development and increases the number of beta R fibres. Moreover, oxidative activity is increased in all muscle fibre types following stimulation. In ALD muscle, chronic stimulation at a fast rhythm (40 Hz) results in a decrease in oxidative activity and inhibits the differentiation of alpha' and beta' muscle fibre types. This study demonstrates that in young chicken, the pattern of activity influences the differenciation of fibre types in slow and fast muscles.  相似文献   

16.
The total content of myosin heavy chains (MHC) and their isoform pattern were studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (extensor digitorum longus) muscles of adult rat during atrophy after denervation and recovery after self-reinnervation. The pattern of fibre types, in terms of ultrastructure, was studied in parallel. After denervation, total MHC content decreased sooner in the slow-twitch muscle than in the fast-twitch. The ratio of MHC-1 and the MHC-2B isoforms to the MHC-2A isoform decreased in the slow and the fast denervated muscles, respectively. After reinnervation of the slow muscle, the normal pattern of MHC recovered within 10 days and the type 1 isoform increased above the normal. In the reinnervated fast muscle, the 2B/2A isoform ratio continued to decrease. Traces of the embryonic MHC isoform, identified by immunochemistry, were found in both denervated and reinnervated slow and fast muscles. A shift in fibre types was similar to that found in the MHC isoforms. Within 2 months of recovery a tendency to normalization was observed. The results show that (a) MHC-2B isoform and the morphological characteristics of the 2B-type muscle fibres are susceptible to lack of innervation, similar to those of type 1, (b) during muscle recovery induced by reinnervation the MHC isoforms and muscle fibres shift transiently to type 1 in the soleus and to type 2A in the extensor digitorum longus muscles, and (c) the embryonic isoform of MHC may appear in the adult skeletal muscles if innervation is disturbed.  相似文献   

17.
The chemically skinned fibre is a suitable preparation to determine whether alterations in myofilament function contribute to muscle dysfunction during ageing and disorders such as chronic obstructive pulmonary disease (COPD). In this preparation the sarcolemma is chemically permeabilized and the myofilament lattice kept intact, functioning under controlled near-physiological conditions. As force generating capacity is an important determinant of muscle function and is related to fibre crosssectional area (FCSA), we compared several methods employed by researchers to determine FCSA. Specific tension, force divided by FCSA, has a co-efficient of variation of 27%, 37%, or 30% when the FCSA was measured from the width and depth assuming an elliptical circumference, the width assuming a circular circumference, and the width while the fibre was suspended in the air, respectively. The last method showed the closest relation with the FCSA in histological sections. The velocity of maximal unloaded shortening (V(0)) varied with fibre type, with fibres expressing the Beta/slow (type I) myosin heavy chain (MyHC) isoform being the slowest and fibres expressing the IIb MyHC isoform the fastest. While muscle weakness experienced after surgery could not be explained by changes in specific tension or FCSA of individual fibres, the preparation revealed significant changes in myofilament function during ageing and COPD.  相似文献   

18.
Muscle spindles are skeletal muscle mechanoreceptors that provide proprioceptive information to the central nervous system. The human adult masseter muscle has greater number, larger and more complex muscle spindles than the adult biceps. For a better knowledge of muscle diversity and physiological properties, this study examined the myosin heavy chain (MyHC) expression of muscle spindle intrafusal fibres in the human young masseter and young biceps muscles by using a panel of monoclonal antibodies (mAbs) against different MyHC isoforms. Eight MyHC isoforms were detected in both muscles-slow-tonic, I, IIa, IIx, foetal, embryonic, α-cardiac and an isoform not previously reported in intrafusal fibres, termed IIx′. Individual fibres co-expressed 2–6 isoforms. MyHC-slow tonic separated bag1, AS-bag1 and bag2 fibres from chain fibres. Typically, bag fibres also expressed MyHC-I and α-cardiac, whereas chain fibres expressed IIa and foetal. In the young masseter 98 % of bag1 showed MyHC-α cardiac versus 30 % in the young biceps, 35 % of bag2 showed MyHC-IIx′ versus none in biceps, 17 % of the chain fibres showed MyHC-I versus 61 % in the biceps. In conclusion, the result showed fundamental similarities in intrafusal MyHC expression between young masseter and biceps, but also marked differences implying muscle-specific proprioceptive control, probably related to diverse evolutionary and developmental origins. Finding of similarities in MyHC expression between young and adult masseter and biceps muscle spindles, respectively, in accordance with previously reported similarities in mATPase fibre type composition suggest early maturation of muscle spindles, preceding extrafusal fibres in growth and maturation.  相似文献   

19.
The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap ''in-series''. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.  相似文献   

20.
Ashhurst DE 《Tissue & cell》1969,1(3):485-496
The pectoralis major muscle of the pigeon is composed of two types of muscle fibre. In the Type I fibres, the myofibrils are closely packed and there are few mitochondria. The myofibrils in the Type II fibres are separated by numerous columns of large mitochondria and lipid droplets. The membrane systems of the two types of fibre are similar. The triads occur at the Z-line; the sarcoplasmic reticulum is in the form of large terminal cisternae which are joined by narrow longitudinal tubules to a broad central cisterna. The value of morphological criteria in the classification of muscle fibres is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号