首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ranunculus glacialis ssp. glacialis is an arctic-alpine plant growing in central and southern European and Scandinavian mountain ranges and the European Arctic. In order to elucidate the taxon's migration history, we applied amplified fragment length polymorphism (AFLP) to populations from the Pyrenees, Tatra mountains and Northern Europe and included data from a previous study on Alpine accessions. Populations from the Alps and the Tatra mountains were genetically highly divergent and harboured many private AFLP fragments, indicating old vicariance. Whereas nearly all Alpine populations of R. glacialis were genetically highly variable, the Tatrean population showed only little variation. Our data suggest that the Pyrenees were colonized more recently than the separation of the Tatra from the Alps. Populations in Northern Europe, by contrast, were similar to those of the Eastern Alps but showed only little genetic variation. They harboured no private AFLP fragments and only a subset of East Alpine ones, and they exhibited no phylogeographical structure. It is very likely therefore that R. glacialis colonized Northern Europe in postglacial times from source populations in the Eastern Alps.  相似文献   

2.
Aim Carex atrofusca has an arctic–alpine distribution in the Northern Hemisphere, with only a few, disjunct localities known in the European Alps. These alpine populations are declining in number and size. In contrast, C. atrofusca has a wide circumpolar distribution range and is abundant in large parts of the Arctic. The degree of genetic differentiation of the alpine populations and their importance for the conservation of the intraspecific genetic variation of the species is unknown. Location Eurasia and Greenland, with emphasis on the European Alps. Methods We applied amplified fragment length polymorphism (AFLP) fingerprinting and sequences of chloroplast DNA to determine the position of the alpine populations in a circumpolar phylogeography of C. atrofusca and to unravel the patterns of genetic diversity and differentiation within the Alps. Results Two distinct major groups were detected in a neighbour‐joining analysis of AFLP data and in parsimony analysis of chloroplast DNA sequences: one consisting of the populations from Siberia and Greenland and one consisting of all European populations as sister to the populations from Central Asia. Within Europe, the populations from the Tatra Mountains and those from Scotland and Scandinavia formed two well‐supported groups, whereas the alpine populations did not constitute a group of their own. The genetic variation in the Alps was almost completely partitioned among the populations, and the populations were almost invariable. Main conclusions The alpine populations possibly originated due to immigration from Central Asia. The strong differentiation among them suggests that genetic drift has been strongly acting on the populations, either as a consequence of founder events during colonization or due to subsequent reduction of population sizes during warm stages of the Holocene.  相似文献   

3.
Temperate mountain ranges such as the European Alps have been strongly affected by the Pleistocene glaciations. Glacial advances forced biota into refugia, which were situated either at the periphery of mountain ranges or in their interior. Whereas in the Alps peripheral refugia have been repeatedly and congruently identified, support for the latter scenario, termed “nunatak hypothesis,” is still limited and no general pattern is recognizable yet. Here, we test the hypothesis of nunatak survival for species growing in the high alpine to subnival zones on siliceous substrate using the cushion plant Androsace alpina (Primulaceae), endemic to the European Alps, as our model species. To this end, we analyzed AFLP and plastid DNA sequence data obtained from a dense and range‐wide sampling. Both AFLPs and plastid sequence data identified the southwestern‐most population as the most divergent one. AFLP data did not allow for discrimination of interior and peripheral populations, but rather identified two to three longitudinally separated major gene pools. In contrast, in the eastern half of the Alps several plastid haplotypes of regional or local distribution in interior ranges—the Alpine periphery mostly harbored a widespread haplotype—were indicative for the presence of interior refugia. Together with evidence from other Alpine plant species, this study shows that in the eastern Alps silicicolous species of open habitats in the alpine and subnival zone survived, also or exclusively so, in interior refugia. As the corresponding genetic structure may be lost in mostly nuclear‐derived, rapidly homogenizing marker systems such as AFLPs or RAD sequencing tags, markers not prone to homogenization, as is the case for plastid sequences (Sanger‐sequenced or extracted from an NGS data set) will continue to be important for detecting older, biogeographically relevant patterns.  相似文献   

4.
The alpine sedge Carex curvula ssp. curvula is a clonal, dominant graminoid found in the European Alps, the Carpathians, the Pyrenees and in some of the Balkan Mountains. It is a late-successional species of acidophilous alpine meadows that occurs on sites that were covered by ice during the last glacial maximum (LGM). By applying the amplified fragment length polymorphism (AFLP) fingerprinting and chloroplast DNA (cpDNA) sequencing, we attempted to identify the recolonization routes followed by the species after the last ice retreat. We relied on the genetic diversity of 37 populations covering the entire distributional range of the species. As a wind-pollinated species, C. curvula is characterized by a low level of population genetic differentiation. Nuclear and chloroplast data both support the hypothesis of a long-term separation of Eastern (Balkans and Carpathians) and Western (Alps and Pyrenees) lineages. In the Alps, a continuum of genetic depauperation from the east to the west may be related to a recolonization wave originating in the eastern-most parts of the chain, where the main glacial refugium was likely located. The Pyrenean populations are nested within the western Alps group and show a low level of genetic diversity, probably due to recent long-distance colonization. In contrast to the Alps, we found no phylogeographical structure in the Carpathians. The combination of reduced ice extension during the Würm period and the presence of large areas of siliceous substrate at suitable elevation suggest that in contrast to populations in the Alps, the species in the Carpathians underwent a local vertical migration rather than extinction and recolonization over long distance.  相似文献   

5.
We investigated the range dynamics of Artemisia eriantha, a widespread, but rare, mountain plant with a highly disjunct distribution in the European Alpine System. We focused on testing the roles of vicariance and long‐distance dispersal in shaping the current distribution of the species. To this end, we collected AFLP and plastid DNA sequence data for 17 populations covering the entire distributional range of the species. Strong phylogeographical structure was found in both datasets. AFLP data suggested that almost all populations were genetically strongly differentiated, with 58% of the overall genetic variation partitioned among populations. Bayesian clustering identified five groups of populations: Balkans, Pyrenees, Central Apennines, one southwestern Alpine population and a Widespread cluster (eastern Pyrenees, Alps, Carpathians). Major groups were supported by neighbor‐joining and NeighbourNet analyses. Fourteen plastid haplotypes were found constituting five strongly distinct lineages: Alps plus Pyrenees, Apennines, Balkans, southern Carpathians, and a Widespread group (eastern Pyrenees, northern Carpathians, Mt. Olympus). Plastid DNA data suggested that A. eriantha colonized the European Alpine System in a westward direction. Although, in southern Europe, vicariant differentiation among the Iberian, Italian and Balkan Peninsulas predominated, thus highlighting their importance as glacial refugia for alpine species, in temperate mountain ranges, long‐distance dispersal prevailed. This study emphasizes that currently highly disjunct distributions can be shaped by both vicariance and long‐distance dispersal, although their relative importance may be geographically structured along, for instance, latitude, as in A. eriantha. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 214–226.  相似文献   

6.
A recent circumpolar survey of chloroplast DNA (cpDNA) haplotypes identified Pleistocene glacial refugia for the Arctic-Alpine Saxifraga oppositifolia in the Arctic and, potentially, at more southern latitudes. However, evidence for glacial refugia within the ice sheet covering northern Europe during the last glacial period was not detected either with cpDNA or in another study of S. oppositifolia that surveyed random amplified polymorphic DNA (RAPD) variation. If any genotypes survived in such refugia, they must have been swamped by massive postglacial immigration of periglacial genotypes. The present study tested whether it is possible to reconstruct the Pleistocene history of S. oppositifolia in the European Alps using molecular methods. Restriction fragment length polymorphism (RFLP) analysis of cpDNA of S. oppositifolia, partly sampled from potential nunatak areas, detected two common European haplotypes throughout the Alps, while three populations harboured two additional, rare haplotypes. RAPD analysis confirmed the results of former studies on S. oppositifolia; high within, but low among population genetic variation and no particular geographical patterning. Some Alpine populations were not perfectly nested in this common gene pool and contained private RAPD markers, high molecular variance or rare cpDNA haplotypes, indicating that the species could possibly have survived on ice-free mountain tops (nunataks) in some parts of the Alps during the last glaciation. However, the overall lack of a geographical genetic pattern suggests that there was massive immigration of cpDNA and RAPD genotypes by seed and pollen flow during postglacial times. Thus, the glacial history of S. oppositifolia in the Alps appears to resemble closely that suggested previously for the species in northern Europe.  相似文献   

7.
A survey of amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) variation was conducted to elucidate the phylogeography of Campanula alpina , a key species of silicicolous alpine grasslands in the Carpathians with a disjunct distribution in the Eastern European Alps. The Carpathians experienced a different glacial history from the Alps: local glaciers were present only in the highest massifs, while alpine habitats extended over larger areas related to their present distribution in this region. We asked: (i) whether in the Carpathians a high-mountain plant exhibits a complex phylogeographical structure or rather signatures of recent migrations, and (ii) whether the disjunct part of the species' distribution in the Alps resulted from a recent colonization from the Carpathians or from a restricted expansion from separate Eastern Alpine refugia. Our study revealed a clear phylogeographical pattern in AFLPs supported by congruent groups of distinct cpDNA haplotypes. Highest genetic differentiation was observed between the Alps and the Carpathians, indicating a long-term isolation between populations from these two mountain ranges. Further genetic division within the Carpathians suggests that current species' distribution is composed of several groups which have been isolated from each other for a long period. One genetic break separates Western from Southeastern Carpathian material, which is in line with a classical biogeographical boundary. A further, strongly supported genetic group was identified at the southwestern edge of the Carpathian arch. In the Eastern Alps, genetic traces of glacial survival in separate refugial areas in the calcareous northern part and the siliceous central part were found.  相似文献   

8.
Arabis alpina is a widespread plant of European arctic and alpine environments and belongs to the same family as Arabidopsis thaliana. It grows in all major mountain ranges within the Italian glacial refugia and populations were sampled over a 1300 km transect from Sicily to the Alps. Diversity was studied in nuclear and chloroplast genome markers, combining phylogeographical and population genetic approaches. Alpine populations had significantly lower levels of nuclear genetic variation compared to those in the Italian Peninsula, and this is associated with a pronounced change in within-population inbreeding. Alpine populations were significantly inbred (F(IS) = 0.553), possibly reflecting a change to the self-incompatibility system during leading edge colonization. The Italian Peninsula populations were approaching Hardy-Weinberg equilibrium (outbreeding, F(IS) = 0.076) and genetic variation was highly structured, consistent with independent local 'refugia within refugia' and the fragmentation of an established population by Quaternary climate oscillations. There is very little evidence of genetic exchange between the Alps and the Italian Peninsula main distribution ranges. The Alps functioned as a glacial sink for A. alpina, while the Italian Peninsula remains a distinct and separate long-term refugium. Comparative analysis indicated that inbreeding populations probably recolonized the Alps twice: (i) during a recent postglacial colonization of the western Alps from a Maritime Alps refugium; and (ii) separately into the central Alps from a source outside the sampling range. The pronounced geographical structure and inbreeding discontinuities are significant for the future development of A. alpina as a model species.  相似文献   

9.
Although many species have similar total distributional ranges, they might be restricted to very different habitats and might have different phylogeographical histories. In the European Alps, our excellent knowledge of the evolutionary history of silicate‐dwelling (silicicole) plants is contrasted by a virtual lack of data from limestone‐dwelling (calcicole) plants. These two categories exhibit fundamentally different distribution patterns within the Alps and are expected to differ strongly with respect to their glacial history. The calcicole Ranunculus alpestris group comprises three diploid species of alpine habitats. Ranunculus alpestris s. str. is distributed over the southern European mountain system, while R. bilobus and R. traunfellneri are southern Alpine narrow endemics. To explore their phylogenetic relationships and phylogeographical history, we investigated the correlation between information given by nuclear and chloroplast DNA data. Analyses of amplified fragment length polymorphism fingerprints and matK sequences gave incongruent results, indicative for reticulate evolution. Our data highlight historical episodes of range fragmentation and expansion, occasional long‐distance dispersal and on‐going gene flow as important processes shaping the genetic structure of the group. Genetic divergence, expressed as a rarity index (‘frequency‐down‐weighted marker values’) seems a better indicator of historical processes than patterns of genetic diversity, which rather mirror contemporary processes as connectivity of populations and population sizes. Three phylogeographical subgroups have been found within the R. alpestris group, neither following taxonomy nor geography. Genetic heterogeneity in the Southern Alps contrasts with Northern Alpine uniformity. The Carpathians have been stepwise‐colonised from the Eastern Alpine lineage, resulting in a marked diversity loss in the Southern Carpathians. The main divergence within the group, separating the ancestor of the two endemic species from R. alpestris s. str., predates the Quaternary. Therefore, range shifts produced by palaeoclimatic oscillations seem to have acted on the genetic structure of R. alpestris group on a more regional level, e.g. triggering an allopatric separation of R. traunfellneri from R. bilobus.  相似文献   

10.
The dating of recent events in the history of organisms needs divergence rates based on molecular fingerprint markers. Here, we used amplified fragment length polymorphisms (AFLPs) of three distantly related alpine plant species co-occurring in the Spanish Sierra Nevada, the Pyrenees and the southwestern Alps/Massif Central to establish divergence rates. Within each of these species ( Gentiana alpina , Kernera saxatilis and Silene rupestris ), we found that the degree of AFLP divergence ( D N72) between mountain phylogroups was significantly correlated with their time of divergence (as inferred from palaeoclimatic/palynological data), indicating constant AFLP divergence rates. As these rates did not differ significantly among species, a regression analysis based on the pooled data was utilized to generate a general AFLP rate. The application of this latter rate to AFLP data from other herbaceous plant species ( Minuartia biflora : Schönswetter et al . 2006 ; Nigella degenii : Comes et al . 2008 ) resulted in a plausible timing of the recolonization of the Svalbard Islands and the separation of populations from the Alps and Scandinavia ( Minuartia ), and of island population separation in the Aegean Archipelago ( Nigella ). Furthermore, the AFLP mutation rate obtained in our study is of the same magnitude as AFLP mutation rates published previously. The temporal limits of our AFLP rate, which is based on intraspecific vicariance events at shallow (i.e. late glacial/Early Holocene) time scales, remains to be tested.  相似文献   

11.
The alpine white-flowered buttercup, Ranunculus kuepferi Greuter & Burdet, is a polyploid complex with diploids endemic to the southwestern Alps and polyploids – which have been previously described as apomictic – widespread throughout European mountains. Due to the polymorphic status of both its ploidy level and its reproductive mode, R. kuepferi represents a key species for understanding the evolution of polyploid lineages in alpine habitats. To disentangle the phylogeography of this polyploid taxon, we used cpDNA sequences and AFLP (amplified fragment length polymorphism) markers in 33 populations of R. kuepferi representative of its ploidy level and distribution area. Polyploid individuals were shown to be the result of at least two polyploidization events that may have taken place in the southwestern Alps. From this region, one single main migration of tetraploids colonized the entire Alpine range, the Apennines and Corsica. Genetic recombination among tetraploids was also observed, revealing the facultative nature of the apomictic reproductive mode in R. kuepferi polyploids. Our study shows the contrasting role played by diploid lineages mostly restricted to persistent refugia and by tetraploids, whose dispersal abilities have permitted their range extension all over the previously glaciated Alpine area and throughout neighbouring mountain massifs.  相似文献   

12.
Aim This study aims to elucidate the phylogeography of the arctic‐alpine annual Comastoma tenellum (Rottb.) Toyok. (Gentianaceae) and to unravel the history of its immigration into the Alps. Location Although samples from Alaska and Central Asia were also included, our study focusses on Europe, especially on the Alps. Methods We applied amplified fragment length polymorphism (AFLP) fingerprinting on 37 populations (162 individuals) of C. tenellum and analysed the results phenetically. Results As C. tenellum is mainly inbreeding, there is typically little to no intrapopulational genetic variation. Two populations from Alaska and Altai are strongly separated from all other accessions. The majority of the populations from the Alps group together with high bootstrap support. They fall into an unsupported Alps I group (northwards of Gran Paradiso) and a well‐supported Alps II group (south‐western Alps). The remaining European populations form a weakly‐supported branch constituting accessions from the Carpathians, Scandinavia and two populations from the Eastern Alps. Main conclusions Comastoma tenellum reached the Alps at least twice. The first immigration event resulted in a lineage that is clearly separated from the other European accessions. The immigration must have occurred well before the last glaciation because this lineage shows further phylogeographical structuring into two groups (Alps II in the south‐western Alps and Alps I in the rest of the Alps). This pattern is presumably due to isolation in different glacial refugia. In addition to the old immigration event, the species reached the Alps in recent times either from Scandinavia or from the Carpathians via long‐distance dispersal. These immigrations resulted in (at least) two populations that are spatially small and poor in individuals.  相似文献   

13.
The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa--Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826) (Gastropoda, Eupulmonata, Carychiidae)--by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (re)colonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant 'hot-spot' for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic) transport could mislead the interpretation of observed phylogeographical patterns in general.  相似文献   

14.
ABSTRACT By using Global Positioning System technology, we documented the long-distance dispersal of a wolf (Canis lupus) from the northern Apennines in Italy to the western Alps in France. This is the first report of long-distance dispersal of wolves in the human-dominated landscapes of southern Europe, providing conclusive evidence that the expanding wolf population in the Alps originates from the Apennine source population through natural recolonization. By crossing 4 major 4-lane highways, agricultural areas, and several regional and provincial jurisdictions, the dispersal trajectory of wolf M15 revealed a single, narrow linkage connecting the Apennine and the Alpine wolf populations. This connectivity should be ensured to allow a moderate gene flow between the 2 populations and counteract potential bottleneck effects and reduced genetic variability of the Alpine wolf population. The case we report provides an example of how hard data can be effective in mitigating public controversies originating from the natural expansion and recolonization processes of large carnivore populations. In addition, by highlighting the connectivity between these 2 transboundary wolf populations, we suggest that documenting long-distance dispersal is particularly critical to support population-based, transboundary management programs.  相似文献   

15.
Aim The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post‐glacial history of many high‐mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems – the Alps and the Carpathians. Location Alps and Carpathians. Methods The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results Neighbour joining and principal coordinate analyses revealed three well‐supported phylogeographical groups of populations corresponding to three disjunct geographical regions – the Alps and the western and south‐eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within‐population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region‐diagnostic markers than those from the south‐eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south‐western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south‐eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long‐term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps.  相似文献   

16.
Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and sequence analysis of noncoding regions of chloroplast DNA were used to investigate 37 populations of Eritrichium nanum covering its total distribution area, the European Alps. There was no haplotypic variation within the populations, and most haplotypes were restricted to single sites or to neighbouring populations, suggesting low levels of long distance gene flow via seeds. The present geographical distribution of haplotypes probably reflects an ancient geographical pattern within two regions in the intensely glaciated western and eastern central Alps identified as genetic hotspot areas. These two regions contained seven of the total of 11 haplotypes, including many of the most derived ones. The divergent haplotypes formed closely related groups, which supported a separate evolution of these haplotypes in these two regions and, more importantly, gave strong evidence for the in situ survival of these populations on nunataks within the western and eastern central Alps during Pleistocene glaciation. This result is in concordance with a previous study on E. nanum using nuclear markers. Only one haplotype was common and widespread throughout the distributional range of E. nanum. At the same time, it was the evolutionarily basal-most and all other haplotypes were best described as its descendants. This haplotype is hypothesized to be genetically identical to a Tertiary Alpine colonizing ancestor, whose distribution was secondarily fragmented and infiltrated by derived haplotypes originating through local mutations.  相似文献   

17.
Arctic-alpine biota occupy enormous areas in the Arctic and the northern hemisphere mountain ranges and have undergone major range shifts during their comparatively short history. The origins of individual arctic-alpine species remain largely unknown. In the case of the Purple saxifrage, Saxifraga oppositifolia, an important model for arctic-alpine plants, phylogeographic studies have remained inconclusive about early stages of the species' spatiotemporal diversification but have provided evidence for long-range colonization out of a presumed Beringian origin to cover today's circumpolar range. We re-evaluated the species' large-scale range dynamics based on a geographically extended sampling including crucial areas such as Central Asia and the (south-)eastern European mountain ranges and employing up-to-date phylogeographic analyses of a plastid sequence data set and a more restricted AFLP data set. In accordance with previous studies, we detected two major plastid DNA lineages also reflected in AFLP divergence, suggesting a long and independent vicariant history. Although we were unable to determine the species' area of origin, our results point to Europe (probably the Alps) and Central Asia, respectively, as the likely ancestral areas of the two main lineages. AFLP data suggested that contact areas between the two clades in the Carpathians, Northern Siberia and western Greenland were secondary. In marked contrast to high levels of diversity revealed in previous studies, populations from the major arctic refugium Beringia did not exhibit any plastid sequence polymorphism. Our study shows that adequate sampling of the southern, refugial populations is crucial for understanding the range dynamics of arctic-alpine species.  相似文献   

18.
There is considerable controversy concerning the fate of Alpine plants during Pleistocene glaciations. While some studies have found evidence for nunatak survival, others have explained the present genetic patterns by survival only in peripheral refugia. We investigated 75 populations of high alpine Ranunculus glacialis from its entire Alpine distribution. Phylogeographical analyses of AFLP data revealed four groups of populations. Two of them, located in the western Alps, were genetically isolated from each other and from the eastern groups, whereas the two eastern Alpine groups were genetically more similar to each other. This suggests longer isolation and/or lower levels of gene flow in the two western groups. As all groups are close to, or overlap with, presumed glacial refugia, invoking glacial survival on nunataks is unnecessary to explain the present genetic pattern. Similar to the phylogeographical patterns of R. glacialis , the previously investigated alpine Phyteuma globulariifolium and Androsace alpina , which are also confined to siliceous bedrock, showed strong geographical affinities to peripheral refugial areas and there were large-scale congruencies in the location of these refugia for all three species.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 183–195.  相似文献   

19.
20.
Rhinanthus minor and Rhinanthus angustifolius (Orobanchaceae) are annual hemiparasites, which occur sympatrically in Europe and are known to hybridize. We studied chloroplast and nuclear (amplified fragment length polymorphism [AFLP]) diversity in R. minor and compared genetic structuring in this species with R. angustifolius by analyzing the AFLP data for both species simultaneously. The AFLP data revealed that populations in Italy, Greece, and southeast Russia initially identified as R. minor were so distant from the other R. minor populations that they probably belong to another, yet unidentified taxon, and we refer to them as Rhinanthus sp. R. minor s.s. showed a clear geographic genetic structure in both the chloroplast DNA (cpDNA) and nuclear genome. The simultaneous analysis of both species shed new light on the previously published findings for R. angustifolius, because some populations now turned out to belong to R. minor. The admixture analysis revealed very few individuals of mixed R. minor-R.angustifolius ancestry in the natural populations in the west of Europe, while admixture levels were higher in the east. The combined haplotype network showed that haplotype H1 was shared among all species and is likely to be ancestral. H2 was more abundant in R. angustifolius and H3 in R. minor, and the latter probably arose from H1 in this species in the east of Europe. The occurrence of H3 in R. angustifolius may be explained by introgression from R. minor, but without interspecific admixture, these are likely to have been old hybridization events. Our study underlines the importance of including related species in phylogeographic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号