首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The BCL-2 homologue MCL-1 plays an important role in the regulation of cell fate by blocking apoptosis as well as regulating cell cycle. MCL-1 has an unusual N-terminal extension, which contains a PEST domain and several phosphorylation sites that have been suggested to regulate its turnover. Here we report that the first 79 amino acids of MCL-1 regulate its subcellular localization. Deletion of this domain impairs both its mitochondrial localization and its anti-apoptotic activity. Conversely, expression of the N terminus of MCL-1 promotes both the association of MCL-1 with mitochondria and cell survival in a fashion that is dependent on the presence of endogenous MCL-1. In addition, the N terminus of MCL-1 has an antagonistic effect on proliferation. Although MCL-1 decreases proliferation through binding to proliferating cell nuclear antigen and cyclin-dependent kinase 1 in the nucleus, the N terminus of MCL-1 accelerates cell division. On the other hand, deletion of this region further increases the anti-proliferative activity of MCL-1. These results suggest that the N terminus of MCL-1 plays a major regulatory role, regulating coordinately the mitochondrial (anti-apoptotic) and nuclear (anti-proliferative) functions of MCL-1.  相似文献   

4.
Autophagy is a highly conserved process that acts sequestering cytoplasmic components for their degradation by the lysosomes. It consists of several sequential steps that have to be finely regulated to ensure both its progression and termination. Post-translational modifications (PTMs) play an important role in regulating ATG proteins function in different stages of autophagy. Recently, we demonstrated that, during prolonged starvation, ULK1 protein is specifically ubiquitylated by NEDD4L, and that this regulation is important to protect cells against excessive autophagy. In this Extra view, we show that ULK1 phosphorylation at 3 different sites on the same ULK1 target region for NEDD4L is preparatory for its ubiquitylation and subsequent degradation. This adds to the complexity of ULK1 multi-level regulation by several factors, including kinases, phosphatases and acetylases, with each contributing to autophagy homeostasis  相似文献   

5.
Adhesion between Chlamydomonas reinhardtii gametes generates a rapid rise in cAMP levels which stimulates mating responses and zygotic cell fusion (Pasquale and Goodenough, 1987). We show here that sexual adhesion in vivo results in a twofold stimulation of flagellar adenylyl cyclase activity when the enzyme is subsequently assayed in vitro, a stimulation that is specifically blocked by Cd2+. A twofold stimulation is also elicited by the in vitro presentation of soluble cross-linking reagents (antisera and concanavalin A). In contrast, the 10-30-fold stimulation of the flagellar cyclase by in vitro exposure to 40 degrees C, first described by Zhang et al. (1991), is insensitive to Cd2+ but sensitive to such drugs as trifluoperizine and dibucaine. The capacity for twofold stimulation is displayed by the vegetative and gametic enzymes but is lost when gametes fuse to form zygotes; in contrast, the 10-fold stimulation is displayed by the gametic and zygotic enzymes but not the vegetative enzyme. The signal-defective mutant imp-3 fails to generate the normal mating-triggered cAMP production and can be rescued by exogenous dibutyryl cAMP. It displays normal basal rates of flagellar cyclase activity and a normal twofold stimulation by sexual adhesion and by soluble cross-linkers, but it is defective in 40 degrees C activation. The gametic cell-body adenylyl cyclase is stimulated when wild-type flagella, but not imp-3 flagella, undergo adhesive interactions in vivo, and it can be directly stimulated in vitro by cAMP presentation. We propose that the two levels of flagellar cyclase stimulation reflect either sequential steps in the activation of a single cyclase enzyme, with imp-3 blocked in the second step, or else the sequential activation of two different flagellar enzymes, with imp-3 defective in the second enzyme. We further propose that the cell- body enzyme is activated by the cAMP that is generated when flagellar cyclase activity is fully stimulated.  相似文献   

6.
Calsequestrin (CS) is theCa2+ binding protein of thejunctional sarcoplasmic reticulum (jSR) lumen. Recently, a chimericCS-HA1, obtained by adding the nine-amino-acid viral epitopehemagglutinin (HA1) to the COOH terminus of CS, was shown to becorrectly segregated to the sarcoplasmic reticulum [A. Nori, K. A. Nadalini, A. Martini, R. Rizzuto, A. Villa, and P. Volpe.Am. J. Physiol. 272 (Cell Physiol. 41): C1420-C1428,1997]. A putative targeting mechanism of CS to jSR implieselectrostatic interactions between negative charges on CS and positivecharges on intraluminal domains of jSR integral proteins, such astriadin and junctin. To test this hypothesis, 2 deletion mutants ofchimeric CS were engineered: CS-HA1Glu-Asp, in which the 14 acidicresidues[-Glu-(Asp)5-Glu-(Asp)7-] of the COOH-terminal tail were removed, andCS-HA149COOH, in which thelast, mostly acidic, 49 residues of the COOH terminus were removed.Both mutant cDNAs were transiently transfected in HeLa cells, myoblastsof rat skeletal muscle primary cultures, or regenerating soleus musclefibers of adult rats. The expression and intracellular localization ofCS-HA1 mutants were studied by epifluorescence microscopy with use ofantibodies against CS or HA1. CS-HA1 mutants were shown to beexpressed, sorted, and correctly segregated to jSR. Thus short or longdeletions of the COOH-terminal acidic tail do not influence thetargeting mechanism of CS.

  相似文献   

7.
The N terminus of p53 regulates its dissociation from DNA   总被引:2,自引:0,他引:2  
It is important to gain insight into p53 DNA binding and how it is regulated. By using electrophoretic mobility shift assays and DNase I footprinting, we show that a region within the N terminus of the protein controls the dissociation of p53 from a p53-binding site. When p53 is bound by a number of N-terminal-specific monoclonal antibodies, its rate of dissociation from DNA is reduced, and its ability to protect a cognate site from DNase I digestion is increased. Moreover, greatly reduced dissociation is observed with p53 protein lacking the N-terminal 96 amino acids. By contrast, deletion of the C terminus does not affect p53 dissociation from DNA or DNase I protection. p53 protein expressed in and purified from bacterial cells displays markedly more instability on its consensus DNA-binding site than does p53 produced in insect cells, suggesting that post-translational modifications may affect the stability of the protein. Our results provide evidence that the N terminus of p53 possesses an auto-inhibitory function that is mechanistically different from the inhibitory region at the C terminus.  相似文献   

8.
9.
10.
The actin filament-associated protein AFAP-110 is an SH2/SH3 binding partner for Src. AFAP-110 contains several protein-binding motifs in its amino terminus and has been hypothesized to function as an adaptor molecule that could link signaling proteins to actin filaments. Recent studies using deletional mutagenesis demonstrated that AFAP-110 can alter actin filament integrity in SV40 transformed Cos-1 cells. Thus, AFAP-110 may be positioned to modulate the effects of Src upon actin filaments. In this report, we sought to determine whether (a) AFAP-110 could interact with actin filaments directly and (b) deletion mutants could affect actin filament integrity and cell shape in untransformed fibroblast cells. The data demonstrate that the carboxy terminus of AFAP-110 is both necessary and sufficient for actin filament association, in vivo and in vitro. Analysis of the carboxy terminus revealed a mean 40% similarity with other known actin-binding motifs, indicating a mechanism for binding to actin filaments. AFAP-110 can also induce lamellipodia formation. Contiguous with the alpha-helical, actin-binding motif is an alpha-helical, leucine zipper motif. Deletion of the leucine zipper motif (AFAP(Deltalzip)) followed by cellular expression enabled AFAP(Deltalzip) to alter actin filament integrity and cell shape in untransformed cells as evidenced by the induction of lamellipodia formation. We hypothesize that AFAP-110 may be an important signaling protein that can directly modulate changes in actin filament integrity and induce lamellipodia formation.  相似文献   

11.
The ribosomal protein S6 kinase (S6K) belongs to the AGC family of Ser/Thr kinases and is known to be involved in the regulation of protein synthesis and the G(1)/S transition of the cell cycle. There are two forms of S6K, termed S6Kalpha and S6Kbeta, which have cytoplasmic and nuclear splice variants. Nucleocytoplasmic shuttling has been recently proposed for S6Kalpha, based on the use of the nuclear export inhibitor, leptomycin B. However, the molecular mechanisms regulating subcellular localization of S6Ks in response to mitogenic stimuli remain to be elucidated. Here we present data on the in vitro and in vivo phosphorylation of S6Kbeta, but not S6Kalpha, by protein kinase C (PKC). The site of phosphorylation was identified as S486, which is located within the C-terminal nuclear localization signal. Mutational analysis and the use of phosphospecific antibodies provided evidence that PKC-mediated phosphorylation at S486 does not affect S6K activity but eliminates the function of its nuclear localization signal and causes retention of an activated form of the kinase in the cytoplasm. Taken together, this study uncovers a novel mechanism for the regulation of nucleocytoplasmic shuttling of S6KbetaII by PKC-mediated phosphorylation.  相似文献   

12.
13.
Cyclin-dependent kinases (CDKs) are essential for regulating key transitions in the cell cycle, including initiation of DNA replication, mitosis and prevention of re-replication. Here we demonstrate that mammalian CDC6, an essential regulator of initiation of DNA replication, is phosphorylated by CDKs. CDC6 interacts specifically with the active Cyclin A/CDK2 complex in vitro and in vivo, but not with Cyclin E or Cyclin B kinase complexes. The cyclin binding domain of CDC6 was mapped to an N-terminal Cy-motif that is similar to the cyclin binding regions in p21(WAF1/SDI1) and E2F-1. The in vivo phosphorylation of CDC6 was dependent on three N-terminal CDK consensus sites, and the phosphorylation of these sites was shown to regulate the subcellular localization of CDC6. Consistent with this notion, we found that the subcellular localization of CDC6 is cell cycle regulated. In G1, CDC6 is nuclear and it relocalizes to the cytoplasm when Cyclin A/CDK2 is activated. In agreement with CDC6 phosphorylation being specifically mediated by Cyclin A/CDK2, we show that ectopic expression of Cyclin A, but not of Cyclin E, leads to rapid relocalization of CDC6 from the nucleus to the cytoplasm. Based on our data we suggest that the phosphorylation of CDC6 by Cyclin A/CDK2 is a negative regulatory event that could be implicated in preventing re-replication during S phase and G2.  相似文献   

14.
15.
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein‐protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid‐liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA‐RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.  相似文献   

16.
17.
Liver X receptors (LXRs) are members of the nuclear receptor superfamily, which have been implicated in lipid homeostasis and more recently in glucose metabolism. Here, we show that glucose does not change LXRα protein level, but affects its localization in pancreatic β-cells. LXRα is found in the nucleus at 8 mM glucose and in the cytoplasm at 4.2 mM. Addition of glucose translocates LXRα from the cytoplasm into the nucleus. Moreover, after the activation of LXR by its synthetic non-steroidal agonist (T0901317), insulin secretion and glucose uptake are increased at 8 mM and decreased at 4.2 mM glucose in a dose-dependent manner. Furthermore, at low glucose condition, okadaic acid reversed LXRα effect on insulin secretion, suggesting the involvement of glucose signaling through a phosphorylation-dependent mechanism.  相似文献   

18.
The cAMP-dependent protein kinase (PKA) is localized to specific subcellular compartments by association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of functionally related proteins that bind the regulatory (R) subunit of PKA with high affinity and target the kinase to specific subcellular organelles. Recently, AKAP18, a low molecular weight plasma membrane AKAP that facilitates PKA-mediated phosphorylation of the L-type Ca(2+) channel, was cloned. We now report the cloning of two additional isoforms of AKAP18, which we have designated AKAP18beta and AKAP18gamma, that arise from alternative mRNA splicing. The AKAP18 isoforms share a common R subunit binding site, but have distinct targeting domains. The original AKAP18 (renamed AKAP18alpha) and AKAP18beta target the plasma membrane when expressed in HEK-293 cells, while AKAP18gamma is cytosolic. When expressed in epithelial cells, AKAP18alpha is targeted to lateral membranes, whereas AKAP18beta is accumulated at the apical membrane. A 23-amino acid insert, following the plasma membrane targeting domain, facilitates the association of AKAP18beta with the apical membrane. The data suggest that AKAP18 isoforms are differentially targeted to modulate distinct intracellular signaling events. Furthermore, the data suggest that plasma membrane AKAPs may be targeted to subdomains of the cell surface, adding additional specificity in intracellular signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号