首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using singlet-singlet energy transfer, we have measured the distance between the anticodons of two transfer RNAs simultaneously bound to a messengerprogramed Escherichia coli 70 S ribosome. The fluorescent Y base adjacent to the anticodon of yeast tRNAYPhe serves as a donor. A proflavine (Pf) chemically substituted for the Y base in tRNAPfPhe serves as an acceptor. By exploiting the sequential binding properties of 70 S ribosomes for two deacylated tRNAs, we can fill the strong site with either tRNAYPhe or tRNAPfPhe and then the weak site with the other tRNA. In both cases donor quenching and sensitized emission of the acceptor are observed. Analysis of these results leads to an estimate for the Y-proflavine distance of 18 ± 2 Å. This distance is very short and suggests strongly that the two tRNAs are simultaneously in contact with adjacent codons of the message. Separate experiments show that binding of a tRNA to the weak site does not perturb the environment of the hypermodified base of a tRNA bound to the strong site. This supports the assignment of the strong site as the peptidyl site. It also indicates that binding of the second tRNA proceeds without a change in the anticodon structure of a pre-existing tRNA at the peptidyl site.  相似文献   

2.
3.
Function of Y in codon-anticodon interaction of tRNA Phe   总被引:7,自引:0,他引:7  
Molar association constants of binding oligonucleotides to the anticodon loops of (yeast) tRNAPhe, (yeast) tRNAHClPhe and (E. coli) tRNAFMet have been determined by equilibrium dialysis. From the temperature dependence of the molar association constants, ΔF, ΔH and ΔS of oligomer-anticodon loop interaction have been determined. The data indicate that the free energy change of codon-anticodon interaction is highly influenced by the presence of a modified purine (tRNAPhe), of an unmodified purine (tRNAFMet) or its absence (tRNAHClPhe). Excision of the modified purine Y in the anticodon loop of tRNAPhe results in a conformational change of the anticodon loop, which is discussed on the basis of the corresponding changes in ΔF, ΔH and ΔS.  相似文献   

4.
The effect of aminoacylation and ternary complex formation with elongation factor Tu•GTP on the tertiary structure of yeast tRNAPhe was examined by 1H-NMR spectroscopy. Esterification of phenylalanine to tRNAPhe does not lead to changes with respect to the secondary and tertiary base pair interactions of tRNA. Complex formation of Phe-tRNAPhe with elongation factor Tu•GTP results in a broadening of all imino proton resonances of the tRNA. The chemical shifts of several NH proton resonances are slightly changed as compared to free tRNA, indicating a minor conformational rearrangement of Phe-tRNAPhe upon binding to elongation factor Tu•GTP. All NH proton resonances corresponding to the secondary and tertiary base pairs of tRNA, except those arising from the first three base pairs in the aminoacyl stem, are detectable in the Phe-tRNAPhe•elongation factor Tu•GTP ternary complex. Thus, although the interactions between elongation factor Tu and tRNA accelerate the rate of NH proton exchange in the aminoacyl stem-region, the Phe-tRNAPhe preserves its typical L-shaped tertiary structure in the complex. At high (> 10−4 M) ligand concentrations a complex between tRNAPhe and elongation factor Tu•GDP can be detected on the NMR time-scale. Formation of this complex is inhibited by the presence of any RNA not related to the tRNA structure. Using the known tertiary structures of yeast tRNAPhe and Thermus thermophilus elongation factor Tu in its active, GTP form, a model of the ternary complex was constructed.  相似文献   

5.
The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNAPhe, Trp-tRNATrp, or Leu-tRNALeuI. The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same ‘loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon–anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection.  相似文献   

6.
To estimate the effect of modified nucleotide-37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAK+YPhe and Phe-tRNAK-YPhe) with the A site of complex [70S.poly(U).deacylated tRNA(Phe) in the P site] was assayed at 0-20 degrees C. As comparisons with native Phe-tRNAK+YPhe showed, removal of the Y base decreased the association constant of Phe-tRNAK-YPhe and the complex by an order of magnitude at any temperature, and increased the enthalpy of their interaction by 23 kJ/mol. When the Y base was present in the anticodon loop of deacylated tRNA(Phe) bound to the P site of the 70S ribosome, twice higher affinity for the A site was observed for Phe-tRNAK-YPhe but not for Phe-tRNAK+YPhe. Thus, the modified nucleotide 3' of the Phe-tRNA(Phe) anticodon stabilized the codon-anticodon interaction both in the A and in the P sites of the 70S ribosome.  相似文献   

7.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

8.
The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5′ or 3′ direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNASufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNASufJ contains an insertion 5′ to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASLSufJ or tRNASufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASLSufJ and ASLThr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASLSufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNASufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.  相似文献   

9.
The equilibrium binding of a highly fluorescent derivative of yeast tRNAPhe to Escherichia coli 70 S ribosomes was studied fluorimetrically at 7 °C in 25 mm-magnesium. Under these conditions 70 S ribosomes bind two deacylated tRNAs stoichiometrically. An analysis of the binding data using a model in which occupancy of the weaker site requires prior occupancy of the stronger site leads to apparent association constants of (1.00 ± 0.05) × 109m?1 and (3.4 ± 0.2) × 107m?1. The use of an independent site model does not change these values appreciably. The observed binding constants do not depend upon the presence or absence of the messenger RNA, poly(U). However, spectroscopic evidence strongly suggests that the anticodons of both bound tRNAs are in contact with the message. This evidence further suggests that in the presence of poly(U) the environment of the hypermodified base adjacent to the anticodon is substantially different in the two sites. This may reflect a difference in the conformation of the anticodon loops or an interaction between the hypermodified base of the weak site tRNA and the anticodon loop of the strong site tRNA.  相似文献   

10.
The environment of the template sequence 5 of the E-site codon on the 80S ribosome was studied with nonaribonucleotide or dodecaribonucleotide derivatives containing Phe codon UUU at the 3 end and a perfluoroarylazido group at the first or third nucleotide. A photoreactive group was linked to C5 of U or N7 of G. The analogs were positioned on the ribosome with the use of tRNAPhe, which is cognate to the UUU codon and directs it to the P site, bringing a modified nucleotide in position –4 to –9 relative to the first nucleotide of the P-site codon. Upon irradiation of ribosome complexes with tRNAPhe and the mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins. The major target of modification was S26 in all cases. In addition, S3 was modified to a low extent when the reactive nucleotide was in position –4 and S14 was in position –6. In the absence of tRNA, all mRNA analogs modified S3.  相似文献   

11.
When yeast tRNAPfPhe, a derivative of tRNAPhe in which proflavine replaces the Y base, is bound simultaneously to both the peptidyl and aminoacyl sites of a 70 S Escherichia coli ribosome, there is a rapid mutual energy transfer between the two bound tRNAs. Analysis of this energy transfer yields an upper limit for the proflavine-proflavine distance of 20 Å. It also allows an unequivocal measurement of the emission spectrum of tRNAPfPhe bound at the aminoacyl site. In the presence of message this spectrum is very different from that seen in the peptidyl site, implying that in the two sites the hypermodified bases exist in significantly different environments. The rapid energy transfer leads to some loss of fluorescence anisotropy. This can be analyzed to obtain an estimate of the angle between the two proflavines: 28 ° ± 10 ° or 152 ° ± 10 °. Taken together all of these results place severe constraints on possible models of codon-anticodon complexes. The mutual energy transfer seen and analyzed on the ribosome is a convenient aspect of fluorescence spectroscopy, and it is one that should see broad application where multiple copies of a fluorescent ligand interact on a macromolecular substrate.  相似文献   

12.
13.
A tRNAPhe derivative carrying ethidium at position 37 in the anticodon loop has been used to study the effect of spermine on conformational transitions of the tRNA. As previously reported (Ehrenberg, M., Rigler, R. and Wintermeyer, W. (1979) Biochemistry 18, 4588–4599) in the tRNA derivative the ethidium is present in three states (T1–T3) characterized by different fluorescence decay rates. T-jump experiments show two transitions between the states, a fast one (relaxation time 10–100 ms) between T1 and T2, and a slow one (100–1000 ms) between T2 and T3. In the presence of spermine the fast transition shows a negative temperature coefficient indicating the existence of a preequilibrium with a negative reaction enthalpy. Spermine shifts the distribution of states towards T3, as does Mg2+, but the final ratio obtained with spermine is higher than with Mg2+, which we tentatively interpret to mean that spermine stabilizes one particular conformation of the anticodon loop.  相似文献   

14.
The hydrolysis of several aminoacylated transfer RNAs, by double-strand-specific ribonuclease from Naja oxiana was studied. The sensitivity to this enzyme of Phe-tRNAPhe, Glu-tRNAGlu and Met-tRNAmMet from Escherichia coli and Phe-tRNAPhe from yeast was examined, both in the free state and complexed to E. coli elongation factor Tu. The hydrolysis patterns in the isolated state were similar for all aminoacylated tRNAs except Glu-tRNA2Glu, which exhibited striking differences probably arising from the existence of several subpopulations of tRNA2Glu. When engaged in a ternary complex with EF-Tu and GTP, the aminoacyl-tRNAs were efficiently protected in the amino acid acceptor and TΨC helices, showing that the interaction with EF-Tu primarily takes place at the -C-C-A end and at the amino acid acceptor and TΨC helices. In all cases an increased reactivity of the anticodon stem was observed in the complexed tRNA, possibly resulting from a conformational change in this region of the tRNAs.  相似文献   

15.
The contribution of entire domains or particular amino acid residues of the phenylalanyl-tRNA synthetase (FRS) from Thermus thermophilus to the interaction with tRNAPhe was studied. Removal of domain 8 of the β subunit resulted in drastic reduction of the dissociation constant of the FRS·tRNAPhe complex. Neither the removal of arginine 2 of the β subunit, which makes the only major contact between domains β1–5 and the tRNA, nor the replacement of the conserved proline 473 by glycine had an influence on the aminoacylation activity of the FRS. Thus, the body comprising domains 1–5 of the β subunit may not be essential for efficient aminoacylation of tRNAPhe by the FRS and rather be involved in other functions.  相似文献   

16.
Three mRNA analogs—derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position—were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNAPhe was used, while tRNAVal was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions –3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with mild UV light ( > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions –1 to +3 binds to G1207, while that in positions –2 or –3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the –3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the –3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

17.
Trans-dichlorodiammineplatinum (II) reacts with yeast phenylalanine transfer RNA to yield a major platinum binding site. The tightly bound platinum has been located on the oligonucleotide Gm-A-A-Y-A-ψp containing the anticodon by standard fingerprinting methods using 32P-labelled tRNAPhe. This site corresponds to a single major platinum site identified during an X-ray crystallographic analysis of yeast tRNAPhe. The solution studies have given confidence to the assignment of part of the 3 Å electron density map to the anticodon region of the molecular structure of yeast tRNAPhe.  相似文献   

18.
Two fractions of phenylalanine tRNA (tRNAPhe1 and tRNAPhe2) were purified by BD-cellulose and RPC-5 chromatography of crude tRNA isolated from barley embryos. Successive RPC-5 rechromatography runs of tRNAPhe2 showed its conversion into more stable tRNAPhe1, suggesting that the two fractions have essentially the same primary structure. Both tRNAPhe1 and tRNAPhe2 had about the same acceptor activity, but tRNAPhe2 was aminoacylated much faster than tRNAPhe1. RPC-5 chromatography of crude aminoacylated tRNA showed higher contents of phe-tRNAPhe2 than of phe-tRNAPhe1 but the ratio of these two fractions estimated by relative fluorescence intensity was about 1. Fluorescence spectra of tRNAPhe from barley embryos suggest that it contains Y base similar to Yw from wheat tRNAPhe.  相似文献   

19.
20.
Steady-state fluorescence and fluorescence anisotropy measurements have been carried out on isolated complexes of fluorescent derivatives of N-AcPhe-tRNAPhe with 70 S ribosomes from Escherichia coli. As a fluorescent probe, proflavine was inserted into either the anticodon loop or the D loop.Upon binding to the A site of poly(U)-programmed ribosomes, the probe in the anticodon loop is highly immobilized and effectively shielded against solvent access in a hydrophobic binding site. Elongation factor G-dependent translocation to the P site does not change any of the fluorescence parameters. These observations indicate that in both sites the environment of the probe with respect to hydrophobicity and shielding against solvent access is rather similar. Moreover, substantial conformational changes of the anticodon loop upon translocation are made unlikely.In contrast to the anticodon loop, the D loop is fully exposed to the solvent in both A and P sites, indicating that the variable region in the middle of the D loop is oriented away from the ribosomal surface.On the other hand, depolarization measurements show that the D loop is strongly immobilized in the A site, possibly by binding interactions of invariant bases of the loop. Upon translocation, the D loop gains considerable flexibility, indicating that in the P site it is neither fixed by contacts with the ribosome nor by intramolecular base-pairing with the T loop.In the absence of poly(U) or in the presence of poly(C), the fluorescence parameters of the probes in the anticodon loop and, more significantly, in the D loop, differ from those observed in the presence of poly(U). These differences are best explained by assuming a codon-induced conformational change of the anticodon loop, which in turn is transmitted to the D loop.When the non-aminoacylated tRNAPhe derivatives are studied, spectroscopic differences as compared to the respective N-AcPhe-tRNAPhe derivatives are observed only for the A site complexes. It appears that the aminoacylation influences the binding of transfer RNA in the A site, but not in the P site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号