首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Mutation Research Letters》1993,301(4):235-241
Both spontaneous frameshift mutation and deletion mutation were measured in a T7 phage deficient in the 3′ → 5′ exonuclease of T7 DNA polymerase. It was found that the absence of this exonuclease caused a marked increase in the revision of both plus one and minus one mutations. The exonuclease deficiency caused essentially no effect on the frequency of deletion between 10-bp direct repeats even when the segment between the direct repeats contained a 25-bp palindrome.  相似文献   

2.
3.
The balance between exonuclease and polymerase activities promotes DNA synthesis over degradation when nucleotides are correctly added to the new strand by replicative B-family polymerases. Misincorporations shift the balance toward the exonuclease site, and the balance tips back in favor of DNA synthesis when the incorrect nucleotides have been removed. Most B-family DNA polymerases have an extended β-hairpin loop that appears to be important for switching from the exonuclease site to the polymerase site, a process that affects fidelity of the DNA polymerase. Here, we show that DNA polymerase ε can switch between the polymerase site and exonuclease site in a processive manner despite the absence of an extended β-hairpin loop. K967 and R988 are two conserved amino acids in the palm and thumb domain that interact with bases on the primer strand in the minor groove at positions n−2 and n−4/n−5, respectively. DNA polymerase ε depends on both K967 and R988 to stabilize the 3′-terminus of the DNA within the polymerase site and on R988 to processively switch between the exonuclease and polymerase sites. Based on a structural alignment with DNA polymerase δ, we propose that arginines corresponding to R988 might have a similar function in other B-family polymerases.  相似文献   

4.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

5.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

6.
Archaeal family B polymerases bind tightly to the deaminated bases uracil and hypoxanthine in single-stranded DNA, stalling replication on encountering these pro-mutagenic deoxynucleosides four steps ahead of the primer–template junction. When uracil is specifically bound, the polymerase–DNA complex exists in the editing rather than the polymerization conformation, despite the duplex region of the primer-template being perfectly base-paired. In this article, the interplay between the 3′–5′ proofreading exonuclease activity and binding of uracil/hypoxanthine is addressed, using the family-B DNA polymerase from Pyrococcus furiosus. When uracil/hypoxanthine is bound four bases ahead of the primer–template junction (+4 position), both the polymerase and the exonuclease are inhibited, profoundly for the polymerase activity. However, if the polymerase approaches closer to the deaminated bases, locating it at +3, +2, +1 or even 0 (paired with the extreme 3′ base in the primer), the exonuclease activity is strongly stimulated. In these situations, the exonuclease activity is actually stronger than that seen with mismatched primer-templates, even though the deaminated base-containing primer-templates are correctly base-paired. The resulting exonucleolytic degradation of the primer serves to move the uracil/hypoxanthine away from the primer–template junction, restoring the stalling position to +4. Thus the 3′–5′ proofreading exonuclease contributes to the inability of the polymerase to replicate beyond deaminated bases.  相似文献   

7.
Single-stranded DNA (ssDNA)-specific exonucleases (ssExos) are expected to be involved in a variety of DNA repair pathways corresponding to their cleavage polarities; however, the relationship between the cleavage polarity and the respective DNA repair pathways is only partially understood. To understand the cellular function of ssExos in DNA repair better, genes encoding ssExos were disrupted in Thermus thermophilus HB8 that seems to have only a single set of 5′–3′ and 3′–5′ ssExos unlike other model organisms. Disruption of the tthb178 gene, which was expected to encode a 3′–5′ ssExo, resulted in significant increase in the sensitivity to H2O2 and frequency of the spontaneous mutation rate, but scarcely affected the sensitivity to ultraviolet (UV) irradiation. In contrast, disruption of the recJ gene, which encodes a 5′–3′ ssExo, showed little effect on the sensitivity to H2O2, but caused increased sensitivity to UV irradiation. In vitro characterization revealed that TTHB178 possessed 3′–5′ ssExo activity that degraded ssDNAs containing deaminated and methylated bases, but not those containing oxidized bases or abasic sites. Consequently, we concluded that TTHB178 is a novel 3′–5′ ssExo that functions in various DNA repair systems in cooperation with or independently of RecJ. We named TTHB178 as T. thermophilus exonuclease I.  相似文献   

8.
1. Both permanent and transient catabolite repression of beta-galactosidase synthesis in Escherichia coli are abolished by 5mm-3':5'-cyclic-AMP when elicited by glucose, but not when caused by a mixture of glucose, glucose 6-phosphate, gluconate and casein hydrolysate (casamino acids). 2. Glucose uptake is slightly increased by 3':5'-cyclic-AMP. 3. No significant effects of the nucleotide were found on the synthesis of protein and RNA, either in exponential growth on one substrate, or during a growth shift from glycerol to glycerol plus glucose. 4. Marked changes in the soluble-protein profiles of cells growing in glycerol and glucose were caused by the presence of 3':5'-cyclic-AMP. 5. Measurements of (14)CO(2) release from specifically-labelled glucose showed that 3':5'-cyclic-AMP greatly stimulated glycolytic activity while having a minor depressing effect on the metabolic flow through the pentose phosphate cycle. 6. The concentrations of several metabolic intermediates, particularly fructose 1,6-diphosphate, were greatly affected by the presence of 3':5'-cyclic-AMP. 7. Several metabolites partially relieved glucose repression of beta-galactosidase synthesis in EDTA-treated cells; three out of five of these metabolites reversed the effect more effectively than did 3':5'-cyclic-AMP. 8. The evidence for and against a direct role for 3':5'-cyclic-AMP is discussed. It is concluded that the evidence for indirect action is at least as strong as that for direct action.  相似文献   

9.
The complexes of repair DNA polymerase β with 3′-exonuclease and some other proteins were isolated from the chromatin of hepatocytes of normal rats for the first time. Biopolymers were extracted from the chromatin by the solution of NaCl and Triton X-100. The extract was fractionated by gel-filtration on Sephacryl S-300 columns successively in low and high ionic strength solutions, on hydroxyapatite, and on Sephadex G-100 columns. The complexes have molecular weights of 100 and 300 kDa. They dissociate to DNA polymerase and exonuclease in the course of chromatography on a DNA-cellulose column or after gel-filtration in the presence of 1 M NaCl. The co-purification of the polymerase and exonuclease is reconstituted in 0.1 M NaCl. The fidelity of monomeric and composite DNA polymerase β was measured using phase ?X174 amber 3 as a primer/template. The products of the synthesis were transfected into Escherichia coli spheroplasts, and the frequency of reverse mutations was determined. The complex of DNA polymerase β with 3′-exonuclease was shown to be 30 times more accurate than the monomeric polymerase, which can decrease the probability of repair mutagenesis and carcinogenesis.  相似文献   

10.
RNA polymerase (RNAP) from thermophilic Thermus aquaticus is characterized by higher temperature of promoter opening, lower promoter complex stability, and higher promoter escape efficiency than RNAP from mesophilic Escherichia coli. We demonstrate that these differences are in part explained by differences in the structures of the N-terminal regions 1.1 and 1.2 of the E. coli σ(70) and T. aquaticus σ(A) subunits. In particular, region 1.1 and, to a lesser extent, region 1.2 of the E. coli σ(70) subunit determine higher promoter complex stability of E. coli RNAP. On the other hand, nonconserved amino acid substitutions in region 1.2, but not region 1.1, contribute to the differences in promoter opening between E. coli and T. aquaticus RNAPs, likely through affecting the σ subunit contacts with DNA nucleotides downstream of the -10 element. At the same time, substitutions in σ regions 1.1 and 1.2 do not affect promoter escape by E. coli and T. aquaticus RNAPs. Thus, evolutionary substitutions in various regions of the σ subunit modulate different steps of the open promoter complex formation pathway, with regions 1.1 and 1.2 affecting promoter complex stability and region 1.2 involved in DNA melting during initiation.  相似文献   

11.
12.
13.
  • 1.1. An endoxylanase (EC 3.2.1.8) was purified from an Escherichia coli strain carrying a xylanase gene from the extreme thermophile “Caldocellum saccharolyticum strain Tp8T6.3.3.1. It was found to have an Mr of 42,000 and an isoelectric point of approx. 5.0.
  • 2.2. The enzyme showed optimum activity at pH 5.0–7.7 and had an activation energy of 44 kJ mol−1. It was stable at room temperature at pH 4.5–11.5 in the presence of 0.5 mg ml−1 bovine serum albumin. The half-life of the enzyme at 75°C was 20 min at pH 6.0 in the presence of 0.5 mg ml−1 bovine serum albumin.
  • 3.3. The xylanase had highest activity on oat spelts xylan, releasing xylobiose and some xylotriose. The Km for oat spelts xylan was 0.021% (w/v) at pH6.0.
  • 4.4. The enzyme had high activity on sugar cane bagasse hemicelluloses A and B, lower activity on larchwood xylan and also hydrolysed carboxymethylcellulose, 4-methylumbelliferyl β-D-cellobioside and p-nitrophenyl β-D-cellobioside, but could not hydrolyse xylobiose.
  • 5.5. It showed transferase activity on p-nitrophenyl β-D-xylopyranoside. Xylose did not inhibit the enzyme.
  相似文献   

14.
Kim CS  Ji ES  Oh DK 《Biotechnology letters》2003,25(20):1769-1774
Kluyveromyces lactis -galactosidase gene, LAC4, was expressed in Escherichia coli as a soluble His-tagged recombinant enzyme under the optimized culture conditions. The expressed protein was multimeric with a subunit molecular mass of 118 kDa. The dimeric form of the -galactosidase was the major fraction but had a lower activity than those of the multimeric forms. The purified enzyme required Mn2+ for activity and was inactivated irreversibly by imidazole above 50 mM. The activity was optimal at 37 and 40 °C for o-nitrophenyl--d-galactopyranoside (oNPG) and lactose, respectively. The optimum pH value is 7. The K m and V max values of the purified enzyme for oNPG were 1.5 mM and 560 mol min–1 mg–1, and for lactose 20 mM and 570 mol min–1 mg–1, respectively.  相似文献   

15.
Most eukaryotic DNA replication is performed by A- and B-family DNA polymerases which possess a faithful polymerase activity that preferentially incorporates correct over incorrect nucleotides. Additionally, many replicative polymerases have an efficient 3′→5′ exonuclease activity that excises misincorporated nucleotides. Together, these activities contribute to overall low polymerase error frequency (one error per 106–108 incorporations) and support faithful eukaryotic genome replication. Eukaryotic DNA polymerase ϵ (Polϵ) is one of three main replicative DNA polymerases for nuclear genomic replication and is responsible for leading strand synthesis. Here, we employed pre-steady-state kinetic methods and determined the overall fidelity of human Polϵ (hPolϵ) by measuring the individual contributions of its polymerase and 3′→5′ exonuclease activities. The polymerase activity of hPolϵ has a high base substitution fidelity (10−4–10−7) resulting from large decreases in both nucleotide incorporation rate constants and ground-state binding affinities for incorrect relative to correct nucleotides. The 3′→5′ exonuclease activity of hPolϵ further enhances polymerization fidelity by an unprecedented 3.5 × 102 to 1.2 × 104-fold. The resulting overall fidelity of hPolϵ (10−6–10−11) justifies hPolϵ to be a primary enzyme to replicate human nuclear genome (0.1–1.0 error per round). Consistently, somatic mutations in hPolϵ, which decrease its exonuclease activity, are connected with mutator phenotypes and cancer formation.  相似文献   

16.
《Gene》1997,190(1):45-51
The β-glucosidase enzyme is important as the terminal enzyme involved in hydrolysis of cellobiose and short-chain cellodextrins generated during enzymatic cellulose degradation. Under controlled reaction conditions the enzyme also displays cello-oligosaccharide synthesizing ability (based on either the thermodynamic or kinetic approach). We present here the purification of the enzyme β-glucosidase (BGL) of Pichia etchellsii from recombinant pBG55 Escherichia coli clone. The kinetic parameters, substrate specificity and oligosaccharide synthesizing ability of the purified enzyme are also reported. The purified 200-kDa protein (tetramer of 50 kDa) was identified as a broad-substrate-specificity enzyme exhibiting increased temperature and glucose tolerance compared to the native yeast enzyme. Temperature directed substrate specificity for aryl β,1–4 linkage, and β(1–2), β(1–4), β(1–6) and β(2-1) linkages in various natural disaccharides was observed. Glycosylation of the enzyme was found to be unimportant for enzyme activity. With both cellobiose and glucose, oligosaccharide synthesis was detected. The implications of this information with regard to cellulose hydrolysis and oligosaccharide synthesis are discussed.  相似文献   

17.
Lu H  Zhang H  Wang Q  Yuan H  He W  Zhao Z  Li Y 《Current microbiology》2001,42(3):211-216
The DNA sequence coding for plasminogen kringle 5 (pK5), an inhibitor of angiogenesis, was fused with that coding for interferon gamma and over-produced in the form of inactive inclusion bodies in E. coli. The amount of fusion protein was about 40% of total protein produced. The fusion protein contained in the inclusion bodies was solubilized in 8 m urea and purified by anion-exchange chromatography. We employed the orthogonal experimental design L16(45) (5 factors, 4 levels, 16 experiments) procedure for researching the influence of denaturant, aggregation suppressor l-arginine, NaCl, pH, and glycine on the refolding procedure. Our results suggest that the presence of appropriate l-arginine, NaCl, and denaturant in the refolding buffer inhibits the aggregation of the fusion protein and increases the yield of renatured protein with biological activity. The refolded fusion protein, γIFN/pk5, has in vitro anti-endothelial cell proliferation activity. Received: 24 July 2000 / Accepted: 21 September 2000  相似文献   

18.
Li M  Huang D 《Biotechnology letters》2007,29(7):1025-1029
A system for the production of soluble interferon (IFN)-λ2 was developed by fusing the IFN-λ2, NusA protein, polyhistidine and S peptide genes and then expressing the fused product (Nus-His-S-tagged IFN-λ2) in Escherichia coli. The expressed fusion protein was purified by Ni-NTA affinity chromatography. The fusion tag was removed from recombinant IFN-λ2 by cleavage with enterokinase. N-Terminal sequencing confirmed the identity of the purified protein. When compared with commercial IFN-α2b, IFN-λ2 had similar antiviral activity. The production and characterization of biologically active IFN-λ2 will be beneficial for its potential role in clinical applications.  相似文献   

19.
NM23-H1 is a metastasis suppressor protein that exhibits 3′-5′ exonuclease activity in vitro. As 3′-5′ exonucleases are generally required for maintenance of genome integrity, this activity represents a plausible candidate mediator of the metastasis suppressor properties of the NM23-H1 molecule. Consistent with an antimutator function, ablation of the yeast NM23 homolog, YNK1, results in increased mutation rates following exposure to UV irradiation and exposure to the DNA damaging agents etoposide, cisplatin, and MMS. In human cells, a DNA repair function is further suggested by increased NM23-H1 expression and nuclear translocation following DNA damage. Also, forced expression of NM23-H1 in NM23-deficient and metastatic cell lines results in coordinate downregulation of multiple DNA repair genes, possibly reflecting genomic instability associated with the NM23-deficient state. To assess the relevance of the 3′-5′ exonuclease activity of NM23-H1 to its antimutator and metastasis suppressor functions, a panel of mutants harboring defects in the 3′-5′ exonuclease and other enzymatic activities of the molecule (NDPK, histidine kinase) have been expressed by stable transfection in the melanoma cell line, 1205Lu. Pilot in vivo metastasis assays indicate 1205Lu cells are highly responsive to the metastasis suppressor effects of NM23-H1, thus providing a valuable model for measuring the extent to which the nuclease function opposes metastasis and metastatic progression.  相似文献   

20.
The glycoside hydrolase β-1,3-glucomannanase is an enzyme that specifically breaks the β-1,3 glycosidic bond of the glucomannan, the main cell wall constituent of some yeasts. In this work, a codon optimized DNA sequence of the MAN5C gene from Penicillium lilacinum ATCC 36010 was expressed in the yeast Pichia pastoris under the control of AOX1 promoter. The recombinant protein plMAN5C was purified from the shake flask culture and the stirred-tank bioreactor culture in yields of 30.0 mg/l and 224.0 mg/l, respectively. The purified protein had a specific activity of 14.6 U/mg at 37 °C, pH 4.5. Biochemical analysis showed that the optimal temperature and pH for plMAN5C were 50 °C and 4.5, respectively. The recombinant plMAN5C was efficient in lysis of the cell wall of the red yeast Rhodosporidium toruloides to form protoplast. Our work provided an effective system for heterogeneous production of β-1,3-glucomannanase, which should facilitate a more convenient application of this enzyme in biotechnology and other related areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号