首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of progesterone and its agonist, R 5020, on casein and transferrin production in pregnant rabbit mammary gland explant culture and its modulation by hormones that synergize with prolactin. The glands were obtained from rabbits on days 12-14 of gestation. The progestins had no effect alone, but significantly inhibited ovine and porcine prolactin stimulation of casein synthesis in a dose dependent manner. There were no effects on transferrin content of the tissue, demonstrating a specific effect of progesterone on casein synthesis. In approx 15% of the cultures, prolactin stimulated casein production to very high levels and the progestins lost their inhibitory action. Progestins were also ineffective when the tissue was cultured with prolactin and unphysiologically high levels of insulin (5 mg/l) or cortisol (280 nmol/l), which stimulated casein synthesis to higher levels than prolactin alone. The concentration of cortisol used was 10 times higher than the serum levels seen in rabbits at the stage of gestation studied (approx 10 ng/ml) and corresponded to levels seen at the end of gestation, a period when the glands are secreting milk and progesterone serum levels have commenced to decrease. Thus, when the prolactin effect upon casein synthesis had been potentiated, whether spontaneously or through synergism with insulin or corticoids, progestins were unable to inhibit it, as is the case in lactating tissues. The results show that utilization of unphysiological levels of hormones in culture may distort the response of the tissue, masking responses that are clearly seen in vivo.  相似文献   

2.
Milk protein synthesis is initiated by prolactin and a glucocorticoid. In the rabbit, prolactin alone is sufficient. However, glucocorticoids potentiate the action of prolactin. The stimulatory effect of glucocorticoids was evaluated after injections of hydrocortisone acetate alone or associated with prolactin by measurements of (a) the total RNA and DNA content of mammary glands, (b) the lactose synthetase activity, (c) casein synthesis, and (d) the concentration of casein mRNA in total cellular RNA and in polysomal RNA by hybridization with its cDNA. The glucocorticoid, totally inactive alone, proved to have a stimulatory effect proportional to the dose injected when prolactin was present. This effect was more evident with low doses of prolactin. Glucocorticoids proceeded by amplifying the capacity of prolactin to enhance the concentration of casein mRNA available for translation. A parallel effect of glucocorticoids on translation of casein mRNA was suspected. Glucocorticoids injected with low doses of prolactin were unable to mimic all the effects of high doses of prolactin alone.  相似文献   

3.
The effects of various concentrations of prolactin and growth hormone on the rates of [3H]-uridine incorporation into RNA, [3H]-leucine incorporation into casein, and ornithine decarboxylase (ODC) activity were determined in mouse mammary gland explants. The lowest concentrations of prolactin which produced significant responses were between 5 and 25 ng/ml. Growth hormone, in contrast, produced significant response at concentrations between 250 and 1,000 ng/ml. The prolactin actions on RNA and casein synthesis were essentially all-or-none type responses, i.e. the magnitude of the responses were maximal at about 10 ng/ml prolactin. The action of prolactin on ODC activity was quite different; a concentration-response relationship was observed with prolactin at concentrations from 10 t 250 ng/ml. It is apparent from these studies that different concentrations of prolactin are required to produce optimal actions on different biochemical parameters in cultured mammary tissues.  相似文献   

4.
Cortisol was previously shown to exert different, concentration-dependent, effects on the accumulation of casein and alpha-lactalbumin in mammary glands from mid-pregnant mice cultured in the presence of insulin and prolactin [Ono & Oka (1980) Cell 19, 473-480]. The present study demonstrated that the addition of 30nM-cortisol to the medium containing insulin and prolactin resulted in a marked enhancement of the rate of synthesis of both alpha-lactalbumin and casein in cultured tissue. The addition of 3 microM-cortisol in combination with insulin and prolactin caused a marked decrease in the rate of alpha-lactalbumin synthesis, but increased casein synthesis substantially. Similar changes were also observed in the amount of translatable mRNA for alpha-lactalbumin and casein in mammary explants cultured with insulin, prolactin and the two concentrations of cortisol. The study of the turnover of the milk proteins in cultured explants showed that virtually all of the casein synthesized remained intact in tissue explants cultured with 3 microM cortisol, whereas about 45% of casein disappeared in 40h from explants cultured with 30nM-cortisol. In contrast, the two concentrations of cortisol did not differentially affect the disappearance of alpha-lactalbumin, which was about 55% in 40h. These results indicate that the concentration-dependent differential actions of cortisol on the accumulation of alpha-lactalbumin and casein are exerted through its effects on the rate of synthesis and turnover of the two proteins as well as on the accumulation of their mRNA species.  相似文献   

5.
The actions of prolactin (PRL) on casein and lipid biosynthesis in cultured mouse mammary gland explants require the ongoing synthesis of the polyamines. This is supported by the fact that (MGBG) methylglyoxal bis(guanylhydrazone), a drug that inhibits the conversion of putrescine to spermidine, abolishes the effects of PRL on casein and lipid biosynthesis; the inhibitory effects of MGBG are reversed by the addition of spermidine to the culture medium. alpha-Difluoro methyl ornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase activity, reduces the PRL-stimulated ornithine decarboxylase (ODC) activity by more than 95%, and yet does not suppress the effects of PRL on RNA, casein or lipid synthesis. These observations suggest that PRL's early action on ODC activity is not essential for the subsequent actions of PRL on the synthesis of certain of the components of milk.  相似文献   

6.
Milk synthesis is initiated solely by prolactin in the pseudopregnant rabbit and glucocorticoids potentiate this action of prolactin. In organ culture, prolactin, in the presence or in the absence of insulin, enhances casein synthesis and cortisol (inactive alone) amplifies this action. Measurements of casein mRNA concentration in total cellular RNA, by hybridization with DNA complementary to casein mRNA, revealed that the stimulation of casein synthesis by the glucocorticoid is accompanied by an increase in the amount of casein mRNA. A systematic comparison of variations of these two parameters indicated that the major effect of glucocorticoids on lactogenesis in the rabbit at this stage of mammary gland development is mediated through an increase in the quantity of casein mRNA available for translation. No simultaneous control of casein mRNA translation by cortisol was observed.  相似文献   

7.
The effect of progesterone on the synthesis of milk proteins, casein and alpha-lactalbumin was investigated by culturing mammary explants from mid-pregnant mice in serum-free medium. The addition of progesterone at concentrations above 10 ng/ml inhibited both the casein and alpha-lactalbumin accumulation that were induced by the synergistic actions of insulin, prolactin and cortisol. The maximal inhibition was attained at a progesterone concentration of 100 ng/ml. The maximal level of inhibition of the alpha-lactalbumin accumulation was about 90% in the presence of insulin and prolactin or insulin, prolactin and 0.01 microgram/ml of cortisol. The inhibition of the casein accumulation by progesterone was about 80% in the presence of insulin and prolactin, and about 40% in the presence of insulin, prolactin and 1 microgram/ml of cortisol, indicating that cortisol partially antagonized the action of progesterone on the casein synthesis. When the inhibitory effect of progesterone on the accumulation of both alpha-lactalbumin and casein was examined in cultured mammary tissues from virgin, early pregnant, mid-pregnant and late pregnant mice, the degree of inhibition was markedly reduced in tissue from late pregnant mice. This indicates that the susceptibility of mammary gland to the inhibitory action of progesterone varies with the developmental stage of the tissue.  相似文献   

8.
Phospholipase C stimulated the rate of [3H]-uridine incorporation into RNA in cultured mouse mammary gland explants. This effect was similar to that elicited by prolactin in that the time-course and magnitude of response were the same. In addition, the effects of prolactin and phospholipase C were non-additive when these agents were tested together. Although phospholipase C, by itself, had no effect on the rate of [3H]-leucine incorporation into casein, it was found to stimulate casein synthesis when the explants were simultaneously exposed to 0.5 mM spermidine. These observations are compatible with the idea that at least certain of the actions of prolactin in the mammary gland may be carried out via phospholipase C.  相似文献   

9.
L M Houdebine  J Djiane 《Biochimie》1980,62(7):433-440
Ouabain added to the culture medium of rabbit mammary gland inhibits prolactin action on the initiation of lactose and casein synthesis. The degree of inhibition is a function of the ouabain concentration in the medium. Likewise, ouabain blocks the accumulation of casein mRNA supported by prolactin. In addition, ouabain provokes a rapid disappearance of prolactin receptors. Conversely prolactin keeps its capacity to enhance the concentration of casein mRNA and the parallel casein synthesis when K+ ions are totally absent from the culture medium. These results suggest that although prolactin induces a modification of the K+/Na+ ratio in the mammary cell and ouabain prevents this effect of prolactin, the inhibitory action of ouabain on lactogenesis can be explained essentially by its effect on the hormone receptors.  相似文献   

10.
The addition of 5 micrograms/ml of both insulin and prolactin, 3 microM cortisol and 5% fetal bovine serum stimulated casein synthesis during a 5 day culture of mammary epithelium from lactating mice using a floating collagen gel as a culture substratum. Omission of any of the three hormones or serum decreased casein synthesis substantially. The use of 10% serum or the attached gel culture system also decreased casein synthesis. Cells cultured with the combination of the three hormones and 5% serum contained a low level of casein mRNA on day 2, but it increased to much higher levels on day 4 and 5, amounting to over 30% of total mRNA on day 5. In contrast to casein synthesis, the maximal increase in alpha-lactalbumin synthesis required the presence of 0.03 microM cortisol. The combination of insulin, prolactin and 3 microM cortisol or insulin and prolactin elicited smaller increases. The translatable mRNA for alpha-lactalbumin in cells cultured with insulin, cortisol and prolactin for 5 days was detected, but not in cells with insulin and cortisol. Both a high and low concentration of cortisol in combination with insulin increased prolactin binding capacity of cultured cells to the same extent, whereas cells cultured with insulin alone contained much lower levels of prolactin binding. The difference in the capacity of prolactin binding between cells cultured with insulin alone and those cultured with insulin and cortisol correlated well with their ability to synthesize casein in response to prolactin.  相似文献   

11.
The effect of 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cyclic nucleotide phosphodiesterase, was tested on several actions of prolactin in cultured mouse mammary tissues. At concentrations of 0.5 mM and above, IBMX abolished the actions of prolactin on RNA and casein synthesis. IBMX by itself, stimulated ornithine decarboxylase (ODC) activity in a dose-response fashion; but the IBMX at concentrations up to 1 mM had no effect on the magnitude of the prolactin-stimulated ODC activity. IBMX inhibited in a dose-response fashion the rate of [14C]-acetate incorporation into lipids; however, prolactin stimulated lipid biosynthesis in the presence of IBMX concentrations of up to 1 mM.  相似文献   

12.
Mammary epithelial cells were prepared by collagenase digestion of tissue from mid-pregnant rabbits and cultured for up to 6 days on either collagen gels or an extracellular matrix prepared from the same tissue. The behaviour of the cells in serum-supplemented medium containing combinations of insulin, prolactin, hydrocortisone, estradiol and progesterone were monitored by measuring rates of casein synthesis, lactose synthesis, DNA synthesis and protein degradation. After 6 days, epithelial cells on floating collagen gels showed substantial increases in casein synthesis and DNA synthesis over freshly-prepared cells, following a decline during the first 3 days when the collagen gels are contracting. The optimum hormone combination for casein synthesis was insulin + prolactin + hydrocortisone, whereas for optimum DNA synthesis the additional presence of estradiol and progesterone was required. Cells on extracellular matrix showed increased rates of both casein synthesis and DNA synthesis by day 6 in the presence of insulin + prolactin + hydrocortisone, with additional estradiol + progesterone having an inhibitory effect. Whereas on day 2 rates of intracellular protein degradation were generally lower in cells on extracellular matrix, by day 6 rates of protein degradation were lowest in cells cultured on collagen gels with insulin + prolactin + hydrocortisone. In all cases, rates of lactose synthesis fell to low levels as the culture proceeded. Pulse-chase labelling of freshly-prepared cells with [32P]orthophosphate in medium containing serum and insulin + prolactin + hydrocortisone demonstrated that newly-synthesized casein was degraded during its passage through the epithelial cell. The influences of the collagen gels and extracellular matrix and of the hormone combinations on epithelial cell differentiation and secretory activity are discussed.  相似文献   

13.
14.
The metabolism of nuclear proteins was studied at differentiation of mammary cells in the tissue culture with lactogenic hormones. The synthesis of nuclear acidic proteins under the influence of insulin is shown to be an initial step in cell differentiation of the gland; later the DNA synthesis is stimulated, and the synthesis and phosphorylation of histones are intestified. The inducing action of prolactin on the synthesis of RNA and casein is displayed only after the action of insulin and hydrocortisone on the tissue.  相似文献   

15.
Suckling, starting at 19:00 h on Day 18 of pregnancy, induced a significant increase in serum prolactin concentration at 20:00 h on Day 19 of pregnancy, but no increase in mammary gland casein or lactose content. Mifepristone (2 mg/kg) injection at 08:00 h on Day 19 of pregnancy induced significant increases in casein, but not in lactose, 24 h after administration. Mifepristone alone did not induce prolactin secretion, indicating that lactogenesis was induced by placental lactogen in the absence of progesterone action. When mifepristone was injected into suckling rats, serum prolactin concentrations were higher than in the untreated suckling rats. Casein in these rats increased significantly 12 h after mifepristone administration and lactose at 24 h after. If the suckling mifepristone-treated rats were given two injections of bromocriptine (1.5 mg/kg) at 12:00 h on Days 18 and 19 of pregnancy, serum prolactin concentrations were not increased by suckling, but casein and lactose concentrations in the mammary gland showed values similar to those obtained in the mifepristone-treated non-suckling rats. Mifepristone can therefore potentiate suckling-induced prolactin release in pregnant rats, demonstrating a direct central inhibitory action of progesterone on prolactin secretion. This suckling-induced prolactin secretion, unable to induce casein or lactose synthesis in the presence of progesterone, enhanced significantly synthesis of these milk components in the absence of progesterone action (rats treated with mifepristone). Fatty acid synthase, which is stimulated by the suckling stimulus in lactating rats, was not modified by mifepristone or suckling in pregnant rats.  相似文献   

16.
Various drugs added to the culture medium of rabbit mammary gland were assayed for their capacity to affect the lactogenic and the mammogenic activities of prolactin. Three lysosomotropic agents NH4Cl, chloroquine and methylamine which were previously demonstrated to inhibit the degradation of the hormone-receptor complex after its internalization (down-regulation) did not prevent the initiation of casein synthesis, of lactose synthetase activity and of DNA synthesis. Five microtubule disrupting drugs, colchicine, colcemid, vinblastin, podophyllotoxin and nocodazole inhibited the induction of casein and DNA synthesis by prolactin whereas two inactive analogues, trimethylcolchicinic acid and lumicolchicine had no effect. None of these drugs exhibited any general cytotoxic effect as judged by the capacity of the tissue to incorporate 14C aminoacids into total proteins and 3H-uridine into total RNA. The microtubule disrupting drugs did not greatly reduce the rate of casein synthesis in the cultured mammary tissue explanted from lactating rabbits. The data suggest that the down-regulation of prolactin receptor is not strictly required for the two considered prolactin activities. By contrast, the integrity of microtubules, or at least of structures in which tubulin is involved, is necessary to ensure a normal transmission of the prolactin information responsible for the initiation of milk and DNA synthesis. In addition, the fact that the lactogenic and the mammogenic activities of prolactin are affected by the same drugs suggests that these two properties of the hormone are mediated by cellular mechanisms which have at least one common step.  相似文献   

17.
The effect of mesenchyme on both proliferation and differentiation of mammary epithelial cells was investigated in a primary cell culture system. Mammary cells cultured on collagen gel for 4 days produced casein in response to the synergistic action of insulin, cortisol, and prolactin. When mammary epithelial cells were co-cultured with fibroblasts derived from three different kinds of fetal mesenchymal tissues, casein production was suppressed. The addition of conditioned media obtained from cultures of these mesenchymal cells stimulated DNA synthesis and reduced casein synthesis in a dose-dependent fashion in the cultured mammary cells. Although such biological actions are similar to those of epidermal growth factor (EGF), the capability to compete with EGF for EGF receptor was not found in this conditioned medium. Sephadex G-200 column chromatography revealed that molecular weight of the peak which has these biological activities was around 100,000. These results indicate that fetal mesenchymal cells secrete a substance(s) which has a stimulatory effect on proliferation and an inhibitory effect on differentiation of mammary epithelial cells.  相似文献   

18.
The role of glucocorticoid in the prolactin-induced accumulation of casein mRNA in mammary explants from midpregnant mice has been studied after an initial 4-day incubation to allow the level of messenger to decline to undetectable levels. Subsequent culture for 3 days: 1) with insulin and glucocorticoid did not result in detectable accumulation of messenger; 2) with insulin and prolactin resulted in a very small accumulation; 3) with insulin, glucocorticoid and prolactin elicited a 20-fold greater accumulation of casein mRNA than the system with only insulin and prolactin. Therefore, although glucocorticoids are not an absolute requirement for casein gene expression in mouse mammary tissue, they are necessary for massive accumulation of casein mRNA induced by prolactin. It appears that this dependence is not a result of either mRNA stabilization or alteration in prolactin receptors. By contrast, stimulation of total epithelial RNA synthesis by prolactin does not have this glucocorticoid dependency.  相似文献   

19.
Casein turnover in rabbit mammary explants in organ culture   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Explants of mammary gland from mid-pregnant rabbits were cultured in medium 199 containing insulin, prolactin and cortisol, and specific anti-casein immunoglobulin G was used to measure the amount, rate of synthesis and rate of degradation of casein in the explants in the presence of hormones and after removal of hormones from previously stimulated tissue. 2. The amount of casein in particle-free supernatants prepared from mammary explants was measured by ;rocket' immunoelectrophoresis. 3. The rate of incorporation of l-[4,5-(3)H]leucine into casein was measured after isolation of the casein by immunoadsorbent chromatography and polyacrylamide-gel electrophoresis in the presence of urea and sodium dodecyl sulphate. 4. Casein accumulates in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in a decrease in the rate of accumulation of casein in the explants. 5. Casein-synthetic rate increases in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in continued casein synthesis at approx. 30% of the rate in the presence of hormones. The synthetic rate does not decrease to values observed in explants cultured throughout in the absence of hormones. 6. Casein is not degraded in mammary explants during a phase of rapid casein accumulation (36-72h) in the presence of hormones. Furthermore casein is not degraded when hormones are removed from the tissue after between 36 and 72h in culture. 7. Casein is glycosylated in mammary explants; the extent of glycosylation parallels the rate of synthesis. The glycosylated protein is rapidly secreted from the tissue. 8. The results are consistent with the notion that after hormonal stimulation mammary explants from mid-pregnant rabbits synthesize, glycosylate and rapidly secrete casein. Removal of hormones decreases the synthetic rate of casein, but does not cause the accumulation of a pool of degradable casein in the lobuloalveolar cells.  相似文献   

20.
Hydrocortisone acetate injected into pseudopregnant rabbits induced casein synthesis and a parallel accumulation of casein mRNA. These effects were not accompanied by any enrichment of total RNA in the mammary cell. Hydrocortisone acetate did not favour the attachment of polysomes to endoplasmic reticulum. Casein mRNA concentration was enhanced in free and membrane-bound polysomes. After long treatments, the concentration of casein mRNA reached a plateau in membrane bound polysomes whereas it continued to be accumulated in free polysomes, suggesting that a substantial part of casein synthesis is then carried out by free polysomes. Progesterone injected with high doses of prolactin was unable to prevent the stimulatory action of prolactin on the synthesis of casein, the accumulation of casein mRNA and mammary gland growth, as judged by DNA content. By contrast, the increase in the total RNA content of mammary gland was still significantly reduced by progesterone. In addition, progesterone inhibited almost completely the formation of membrane-bound polysomes and the anchorage of casein mRNA to endoplasmic reticulum. From these data, it was concluded that the formation of the endoplasmic reticulum is not a prerequisite for the initiation of casein synthesis. Glucocorticoids do not play a major role in the formation of the endoplasmic reticulum and the Golai apparatus and in the binding of casein synthesizing polysomes to membranes. Progesteronne is capable of inhibiting preferentially and gradually the stimulation of cellular functions requiring the most potent prolactin stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号