首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Comparative effects of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on lateral root (LR) formation were studied using 2-day-old seedlings of IR8 rice (Oryza sativa L.). Results showed that IBA at all concentrations (0.8–500 nmol/L) increased the number of LRs in the seminal root. However exogenous IAA, failed to increase the number of LRs. On the other hand, both IBA and IAA caused inhibition of seminal root elongation and promotion of LR elongation, but IAA can only reach to the same degree of that of IBA at a more than 20-fold concentration. Exogenous IBA had no effect on endogenous IAA content. We conclude from the results that IBA could act directly as a distinct auxin, promoting LR formation in rice, and that the signal transduction pathway for IBA is at least partially different from that for IAA.  相似文献   

2.
The formation of lateral roots (LRs) is a key driver of root system architecture and developmental plasticity. The first stage of LR formation, which leads to the acquisition of founder cell identity in the pericycle, is the primary determinant of root branching patterns. The fact that initiation events occur asynchronously in a very small number of cells inside the parent root has been a major difficulty in the study of the molecular regulation of branching patterns. Inducible systems that trigger synchronous lateral formation at predictable sites have proven extremely valuable in Arabidopsis to decipher the first steps of LR formation. Here, we present a LR repression system for cereals that relies on a transient water-deficit treatment, which blocks LR initiation before the first formative divisions. Using a time-lapse approach, we analysed the dynamics of this repression along growing roots and were able to show that it targets a very narrow developmental window of the initiation process. Interestingly, the repression can be exploited to obtain negative control root samples where LR initiation is absent. This system could be instrumental in the analysis of the molecular basis of drought-responsive as well as intrinsic pathways of LR formation in cereals.  相似文献   

3.
Pueraria lobata hairy roots have faster elongationand more branches than normal roots. The responses of hairy roots and normalroots to treatment with three auxins, indole-3-acetic acid (IAA),indole-3-butyric acid (IBA), and naphthalene acetic acid (NAA) were different.In normal roots, all three auxins strongly stimulated lateral root formation atall tested concentrations. Responses to IAA and IBA in primary root growth andlateral root elongation were similar and depended on concentration; promotionat0.1 M, no effect at 1.0 M, and inhibition at2.5 M. In hairy roots, lateral root formation varied inresponseto the different auxins, i.e. depressed by NAA, unaffected by IAA, and promotedby IBA. Primary root growth was slightly inhibited by IBA and was unaffected byIAA. However, mean lateral root length was reduced in response to IAA and IBA.Only NAA exerted strong inhibition on primary and lateral root elongation inboth root types. The similar free IAA and conjugated IAA content but quitedifferent basal ethylene production and biosynthesis in hairy and normal rootssuggested different mechanisms of response to exogenous auxins in the two roottypes.  相似文献   

4.
Lateral roots (LRs) determine the overall root system architecture, thus enabling plants to efficiently explore their underground environment for water and nutrients. However, the mechanisms regulating LR development are poorly understood in monocotyledonous plants. We characterized a rice mutant, wavy root elongation growth 1 (weg1), that produced higher number of long and thick LRs (L-type LRs) formed from the curvatures of its wavy parental roots caused by asymmetric cell growth in the elongation zone. Consistent with this phenotype, was the expression of the WEG1 gene, which encodes a putative member of the hydroxyproline-rich glycoprotein family that regulates cell wall extensibility, in the root elongation zone. The asymmetric elongation growth in roots is well known to be regulated by auxin, but we found that the distribution of auxin at the apical region of the mutant and the wild-type roots was symmetric suggesting that the wavy root phenotype in rice is independent of auxin. However, the accumulation of auxin at the convex side of the curvatures, the site of L-type LR formation, suggested that auxin likely induced the formation of L-type LRs. This was supported by the need of a high amount of exogenous auxin to induce the formation of L-type LRs. These results suggest that the MNU-induced weg1 mutated gene regulates the auxin-independent parental root elongation that controls the number of likely auxin-induced L-type LRs, thus reflecting its importance in improving rice root architecture.  相似文献   

5.
The role of auxins on root system architecture was studied by applying indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthaleneacetic acid (NAA) to maize roots and analysing the main processes involved in root development: primary root (PR) elongation, lateral root (LR) formation, and LR root elongation. We found that these effects were not dependent only on concentration, but also on the type of auxin applied. We also studied temporal changes in auxin inhibition of PR elongation. These temporal changes were analysed calculating the elongation ratio between two consecutive one day periods after auxin application. It was observed that a reduction in root elongation was also dependent on the type of auxin applied and its concentration. The inhibitory effect of IBA and IAA decreased on the second day, and the ratio also increased with the concentration. In contrast, NAA increased root elongation inhibition with time. Indeed, the ratio decreased as the NAA concentration increased. Regarding LR formation, we observed that external auxin increased only LR formation in certain zones of the PR. Finally, comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.  相似文献   

6.
7.
Lateral root (LR) formation displays considerable plasticity in response to developmental and environmental signals. The mechanism whereby plants incorporate diverse regulatory signals into the developmental programme of LRs remains to be elucidated. Current concepts of lateral root regulation focus on the role of auxin. In this study, we show that another plant hormone, abscisic acid (ABA), also plays a critical role in the regulation of this post-embryonic developmental event. In the presence of exogenous ABA, LR development is inhibited. This occurs at a specific developmental stage, i.e. immediately after the emergence of the LR primordium (LRP) from the parent root and prior to the activation of the LR meristem, and is reversible. Interestingly, this inhibition requires 10-fold less ABA than the inhibition of seed germination and is only slightly reduced in characterised abi mutants, suggesting that it may involve novel ABA signalling mechanisms. We also present several lines of evidence to support the conclusion that the ABA-induced lateral root inhibition is mediated by an auxin-independent pathway. First, the inhibition could not be rescued by either exogenous auxin application or elevated auxin synthesis. Secondly, a mutation in the ALF3 gene, which is believed to encode an important component in the auxin-dependent regulatory pathway for the post-emergence LR development, does not affect the sensitivity of LRs to ABA. Thirdly, ABA and the alf3-1 mutation do not act at the same developmental point. To summarise, these results demonstrate a novel ABA-sensitive, auxin-independent checkpoint for lateral root development in Arabidopsis at the post-emergence stage. In addition, we also present data indicating that regulation of this developmental checkpoint may require novel ABA signalling mechanisms and that ABA suppresses auxin response in the LRPs.  相似文献   

8.
The plant hormone auxin has been shown to be involved in lateral root development and application of auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), increases the number of lateral roots in several plants. We found that the effects of two auxins on lateral root development in the indica rice (Oryza sativa L. cv. IR8) were totally different from each other depending on the application method. When the roots were incubated with an auxin solution, IAA inhibited lateral root development, while IBA was stimulatory. In contrast, when auxin was applied to the shoot, IAA promoted lateral root formation, while IBA did not. The transport of [3H]IAA from shoot to root occurred efficiently (% transported compared to supplied) but that of [3H]IBA did not, which is consistent with the stimulatory effect of IAA on lateral root production when applied to the shoot. The auxin action of IBA has been suggested to be due to its conversion to IAA. However, in rice IAA competitively inhibited the stimulatory effect of IBA on lateral root formation when they were applied to the incubation solution, suggesting that the stimulatory effect of IBA on lateral root development is not through its conversion to IAA.  相似文献   

9.

Root architecture is basically controlled by auxin and cytokinin, which antagonize in the formation of lateral roots (LRs) along the primary root (PR) axis. Several mechanisms have been proposed to explain the interaction between these two hormones, cytokinin being the hormone that inhibits LR formation. The analysis of the cytokinin effect on LR formation using LRs in several stages of development could indicate which steps of LR formation are more sensitive to cytokinin. The application of cytokinin to maize PRs showed that the inhibitory effect of cytokinin on LR formation was greater in the zones in which the initial events to form new LRs are taking place. In the presence of cytokinin, the PR is not able to produce new LRs in the initiation zone; this inhibitory effect is permanent as this zone did not recover the capability to form LRs after removing cytokinin. However, the LR density in zones with appreciable LR primordia when cytokinin was applied was only slightly inhibited when a high concentration was used. These results showed that LR formation is more sensitive to the inhibitory effect of cytokinin in the earliest stages of LR development. However, the elongation of a LR primordium to emerge and the subsequent elongation of the new LR were only slightly affected by cytokinin.

  相似文献   

10.
Jasmonates are lipid-derived hormones that act as signal molecules in abiotic and biotic stresses and influence several aspects of plant growth and development. In this work we have investigated the effect of jasmonic acid (JA) on the root architecture of Helianthus annuus seedlings and if JA and auxins interact to modulate the growth of the primary root (PR) and lateral roots (LR). The addition of μM concentrations of JA to the growing medium of sunflower seedlings decreased the growth of the PR and LR, and also reduced the number of LR. Moreover, treatment with ibuprofen, an inhibitor of JA synthesis, increased PR and LR root length causing a deep effect on root architecture. Hence, not only exogenous but also the endogenous JA regulates sunflower root growth. Microscopic analysis showed that the application of JA reduces the cortex cell length and the estimated cell production rate in root meristem while ibuprofen only affects the cell elongation. A possible interaction between JA and auxins to regulate root growth was further analyzed. We show that JA produced its phenotype even in the presence of reduced levels of auxin generated by treatment with an auxin transport inhibitor. Besides, the auxin produced its phenotype even when ibuprofen was applied. In conclusion, JA may induce primary and lateral root growth inhibition in sunflower by an auxin-independent pathway.  相似文献   

11.
The Methylobacterium sp. strain NPFM-SB3, isolated from Sesbania rostrata stem nodules possessed nitrogenase activity and nodA genes. Pure culture of NPFM-SB3 strain produced indole-3-acetic acid, cytokinins and on inoculation to rice plants resulted in numerous lateral roots. Inoculation of synthetic auxins 2,4-dichlorophenoxy acetic acid, naphthalene acetic acid or flavonoids naringenin and dihydroxy-4-methoxyisoflavone individually or to bacterial inoculated rice seedlings improved the plant growth and lateral root formation under hydroponic condition. The formation of nodule-like structure and nitrogenase activity which is purely auxin dependent was observed in 2,4-dichlorophenoxy acetic acid treatments to Methylobacterium sp. NPFM-SB3 inoculated rice plants. The rhizobia entered through fissures formed due to lateral root emergence and spread intercellularly in the nodular structures concluded that the effect of 2,4-dichlorophenoxy acetic acid treatment for rice seedlings grown under gnotobiotic conditions is to create a niche in which these bacteria can grow.  相似文献   

12.
Callus cultures of Zea mays were used to study the interaction of light with exogenous cytokinin/auxin levels in the initiation, growth and development of roots. Three auxins, indoleacetic acid (IAA), naphthaleneacetic acid (NAA) and 2,4 dichlorophenoxyacetic acid (2,4 D) were remarkably different in their effects on callus growth and root initiation. NAA at concentrations of 5 and 25 μM produced the highest combined yields of callus and roots under low light conditions. No significant morphological effects on roots were observed with the three auxins tested nor did low and intermediate light intensities alter root development.
At intermediate light levels the addition of the cytokinin, zeatin, was also able to influence the differentiation of the callus tissue. Increasing the cytokinin/auxin ratio from low to high shifted the development from callus growth to abundant root formation. High light caused the formation of short, thick roots. This effect could be counteracted in part by zeatin which promoted elongation. These observations suggest that both, the cytokinin/auxin ratio and light play an important role in the development of monocotyledonous roots.  相似文献   

13.
We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.  相似文献   

14.
15.
The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates primordia emergence through increased accumulation of auxin or change in sensitivity to auxin in the primordia. Both the strong effect of 2,3,5-triiodobenzoic acid and the phenotype of the auxin-transport mutants (aux1, eir1) suggest that low P availability modifies local auxin concentrations within the root system through changes in auxin transport rather than auxin synthesis.  相似文献   

16.
BACKGROUND AND AIMS: The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. METHODS: The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. KEY RESULTS: LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. CONCLUSIONS: In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted.  相似文献   

17.
Auxins control growth and development in plants, including lateral rootinitiation and root gravity response. However, how endogenous auxin regulatesthese processes is poorly understood. In this study, the effects of auxins onlateral root initiation and root gravity response in rice were investigatedusing a lateral rootless mutant Lrt1, which fails to formlateral roots and shows a reduced root gravity response. Exogenous applicationof IBA to the Lrt1 mutant restored both lateral rootinitiation and root gravitropism. However, application of IAA, a major form ofnatural auxin, restored only root gravitropic response but not lateral rootinitiation. These results suggest that IBA is more effective than IAA in lateralroot formation and that IBA also plays an important role in root gravitropicresponse in rice. The application of NAA restored lateral root initiation, butdid not completely restore root gravitropism. Root elongation assays ofLrt1 displayed resistance to 2,4-D, NAA, IBA, and IAA.This result suggests that the reduced sensitivity to exogenous auxins may be due tothe altered auxin activity in the root, thereby affecting root morphology inLrt1.  相似文献   

18.
In this work, the effects of osmotic stress and exogenous auxin (indole-3-butyric acid, IBA) on root morphology and nitric oxide (NO) generation in roots were compared in pea plants. Five-day-old plants were treated with 0, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8 or 10−9  M IBA or with PEG 6000 at concentrations that determined 0, 50, 100, 200 or 400 mOsm in the medium, during 5 days. NO generation was examined by in situ and in vivo fluorescence method. Increasing concentrations of PEG as well as IBA resulted in shortening of primary root (PR), enhancement of lateral root (LR) number and significant increase of NO generation. Time-dependent investigations revealed that in the case of IBA treatments, the LR number increased in parallel with an intensified NO generation, while elongation of PR was not followed by changes in NO levels. Under osmotic stress, the time curve of NO development was distinct compared with that of IBA-treated roots, because significantly, the appearance of lateral initials was preceded by a transient burst of NO. This early phase of NO generation under osmotic stress was clearly distinguishable from that which accompanied LR initiation. It is concluded that osmotic stress and the presence of exogenous auxin resulted in partly similar root architecture but different time courses of NO synthesis. We suppose that the early phase of NO generation may fulfill a role in the osmotic stress-induced signalization process leading to the modification of root morphology.  相似文献   

19.
The plasticity of root architecture is crucial for plants to acclimate to unfavourable environments including low nitrogen (LN) stress. How maize roots coordinate the growth of axile roots and lateral roots (LRs), as well as longitudinal and radial cell behaviours in response to LN stress, remains unclear. Maize plants were cultivated hydroponically under control (4 mm nitrate) and LN (40 μm ) conditions. Temporal and spatial samples were taken to analyse changes in the morphology, anatomical structure and carbon/nitrogen (C/N) ratio in the axile root and LRs. LN stress increased axile root elongation, reduced the number of crown roots and decreased LR density and length. LN stress extended cell elongation zones and increased the mature cell length in the roots. LN stress reduced the cell diameter and total area of vessels and increased the amount of aerenchyma, but the number of cell layers in the crown root cortex was unchanged. The C/N ratio was higher in the axile roots than in the LRs. Maize roots acclimate to LN stress by optimizing the anatomical structure and N allocation. As a result, axile root elongation is favoured to efficiently find available N in the soil.  相似文献   

20.
Hormone interactions during lateral root formation   总被引:2,自引:0,他引:2  
Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号