共查询到20条相似文献,搜索用时 0 毫秒
1.
G.A.M. King 《Bio Systems》1977,9(1):35-42
It is postulated, with support from kinetic modelling, that a succession of symbioses was the major process of evolution during the early stages of life. The process became less effective with the passage of time, while evolution by the natural selection of variants became more effective. The postulate may contribute usefully to discussions on the evolution of biochemical complexity and the structure of cells. 相似文献
2.
Roossinck MJ 《Nature reviews. Microbiology》2005,3(12):917-924
Darwin's theory of evolution by natural selection has been supported by molecular evidence and by experimental evolution of viruses. However, it might not account for the evolution of all life, and an alternative model of evolution through symbiotic relationships also has gained support. In this review, the evolution of plant viruses has been reinterpreted in light of these two seemingly opposing theories by using evidence from the earliest days of plant virology to the present. Both models of evolution probably apply in different circumstances, but evolution by symbiotic association (symbiogenesis) is the most likely model for many evolutionary events that have resulted in rapid changes or the formation of new species. In viruses, symbiogenesis results in genomic reassortment or recombination events among disparate species. These are most noticeable by phylogenetic comparisons of extant viruses from different taxonomic groups. 相似文献
3.
Background and Aims
ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch biosynthesis. In the green plant lineage, it is composed of two large (LSU) and two small (SSU) sub-units encoded by paralogous genes, as a consequence of several rounds of duplication. First, our aim was to detect specific patterns of molecular evolution following duplication events and the divergence between monocotyledons and dicotyledons. Secondly, we investigated coevolution between amino acids both within and between sub-units.Methods
A phylogeny of each AGPase sub-unit was built using all gymnosperm and angiosperm sequences available in databases. Accelerated evolution along specific branches was tested using the ratio of the non-synonymous to the synonymous substitution rate. Coevolution between amino acids was investigated taking into account compensatory changes between co-substitutions.Key Results
We showed that SSU paralogues evolved under high functional constraints during angiosperm radiation, with a significant level of coevolution between amino acids that participate in SSU major functions. In contrast, in the LSU paralogues, we identified residues under positive selection (1) following the first LSU duplication that gave rise to two paralogues mainly expressed in angiosperm source and sink tissues, respectively; and (2) following the emergence of grass-specific paralogues expressed in the endosperm. Finally, we found coevolution between residues that belong to the interaction domains of both sub-units.Conclusions
Our results support the view that coevolution among amino acid residues, especially those lying in the interaction domain of each sub-unit, played an important role in AGPase evolution. First, within SSU, coevolution allowed compensating mutations in a highly constrained context. Secondly, the LSU paralogues probably acquired tissue-specific expression and regulatory properties via the coevolution between sub-unit interacting domains. Finally, the pattern we observed during LSU evolution is consistent with repeated sub-functionalization under ‘Escape from Adaptive Conflict’, a model rarely illustrated in the literature. 相似文献4.
A model for the coevolution of two species in facultative symbiosis is used to investigate conditions under which species merge to form a single reproductive unit. Two traits evolve in each species, the first affecting loss of resources from an individual to its partner, and the second affecting vertical transmission of the symbiosis from one generation to the next. Initial conditions are set so that the symbiosis involves exploitation of one partner by the other and vertical transmission is very rare. It is shown that, even in the face of continuing exploitation, a stable symbiotic unit can evolve with maximum vertical transmission of the partners. Such evolution requires that eventually deaths should exceed births for both species in the free-living state, a condition which can be met if the victim, in the course of developing its defences, builds up sufficiently large costs in the free-living state. This result expands the set of initial conditions from which separate lineages can be expected to merge into symbiotic units. 相似文献
5.
The concept of cellular evolution 总被引:4,自引:0,他引:4
Summary A central evolutionary question is whether the eucaryotic cytoplasm represents a line of descent that is separate from the typical bacterial line. It is argued on the basis of differences between their respective translation mechanisms that the two lines do represent separate phylogenetic trees in the sense that each line of descent independently evolved to a level of organization that could be called procaryotic. The two lines of descent, nevertheless shared a common ancestor, that was far simpler than the procaryote. This primitive entity is called a progenote, to recognize the possibility that it had not yet completed evolving the link between genotype and phenotype. This concept changes considerably the view one takes toward cellular evolution. 相似文献
6.
Landweber LF 《The Biological bulletin》1999,196(3):324-5; discussion 325-6
7.
Aaron O'Dea Jeremy Jackson 《Proceedings. Biological sciences / The Royal Society》2009,276(1673):3629-3634
Most macroevolutionary events are correlated with changes in the environment, but more rigorous evidence of cause and effect has been elusive. We compiled a 10 Myr record of origination and extinction, changes in mode of reproduction, morphologies and abundances of cupuladriid bryozoan species, spanning the time when primary productivity collapsed in the southwestern Caribbean as the Isthmus of Panama closed. The dominant mode of reproduction shifted dramatically from clonal to aclonal, due in part to a pulse of origination followed by extinction that was strongly selective in favour of aclonal species. Modern-day studies predict reduced clonality in increasingly oligotrophic conditions, thereby providing a mechanistic explanation supporting the hypothesis that the collapse in primary productivity was the cause of turnover. However, whereas originations were synchronous with changing environments, extinctions lagged 1–2 Myr. Extinct species failed to become more robust and reduce their rate of cloning when the new environmental conditions arose, and subsequently saw progressive reductions in abundance towards their delayed demise. Environmental change is therefore established as the root cause of macroevolutionary turnover despite the lag between origination and extinction. 相似文献
8.
Raik Mikelsaar 《Journal of molecular evolution》1987,25(2):168-183
9.
Gogarten JP 《Trends in ecology & evolution》1995,10(4):147-151
Recent progress in data collection and analysis has changed the study of origin of life from an area dominated by speculation into a field abundant with testable hypotheses. This review discusses advances in the following areas: the fossil recordsd; the 'retrodiction' of biochemical pathways; and contradictions between different molecular phylogenies. The latter indicates a limited number of horizontal gene transfers during the early evolution. However, these cases of horizontal gene transfer are so infrequent that they can be detected as exceptions in an otherwise coherent picture. Cases of horizontal gene transfer can be recognized within the background of the majority consensus of molecular markers. The fusion of separate lineages to form new species is revealed by the simultaneous horizontal transfer of several independent genes. 相似文献
10.
11.
12.
13.
Claverie JM 《Genome biology》2006,7(6):110-5
The origins of viruses are shrouded in mystery, but advances in genomics and the discovery of highly complex giant DNA viruses have stimulated new hypotheses that DNA viruses were involved in the emergence of the eukaryotic cell nucleus, and that they are worthy of being considered as living organisms. 相似文献
14.
15.
16.
17.
18.
Wall LG 《Journal of Plant Growth Regulation》2000,19(2):167-182
Abstract
The term ``actinorhiza' refers both to the filamentous bacteria Frankia, an actinomycete, and to the root location of nitrogen-fixing nodules. Actinorhizal plants are classified into four subclasses,
eight families, and 25 genera comprising more than 220 species. Although ontogenically related to lateral roots, actinorhizal
nodules are characterized by differentially expressed genes, supporting the idea of the uniqueness of this new organ. Two
pathways for root infection have been described for compatible Frankia interactions: root hair infection or intercellular penetration. Molecular phylogeny groupings of host plants correlate with
morphologic and anatomic features of actinorhizal nodules. Four clades of actinorhizal plants have been defined, whereas Frankia bacteria are classified into three major phylogenetic groups. Although the phylogenies of the symbionts are not fully congruent,
a close relationship exists between plant and bacterial groups. A model for actinorhizal specificity is proposed that includes
different levels or degrees of specificity of host-symbiont interactions, from fully compatible to incompatible. Intermediate,
compatible, but delayed or limited interactions are also discussed. Actinorhizal plants undergo feedback regulation of symbiosis
involving at least two different and consecutive signals that lead to a mechanism controlling root nodulation. These signals
mediate the opening or closing of the window of susceptibility for infection and inhibit infection and nodule development
in the growing root, independently of infection mechanism. The requirement for at least two molecular recognition steps in
the development of actinorhizal symbioses is discussed. 相似文献
19.
Kourilsky P 《Comptes rendus biologies》2012,335(3):169-179
Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. 相似文献