首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Newly described marsupial specimens of Judithian (late Campanian) and Lancian (Maastrichtian) age in the western interior of North America (Wyoming to Alberta) have dental morphologies consistent with those expected in comparably aged sediments in South America (yet to be found). Three new Lancian species are referable to the didelphimorphian Herpetotheriidae, which suggests that the ameridelphian radiation was well under way by this time. The presence of a polydolopimorphian from Lancian deposits with a relatively plesiomorphic dental morphology and an additional polydolopimorphian taxon from Judithian deposits with a more derived molar form indicate that this lineage of typically South American marsupials was diversifying in the Late Cretaceous of North America. This study indicates that typical South American lineages (e.g. didelphimorphians and polydolopimorphians) are not the result of North American peradectian progenitors dispersing into South America at the end of the Cretaceous (Lancian), or at the beginning of the Paleocene (Puercan), and giving rise to the ameridelphian marsupials. Instead, these lineages, and predictably others as well, had their origins in North America (probably in more southerly latitudes) and then dispersed into South America by the end of the Cretaceous. Geophysical evidence concerning the connections between North and South America in the Late Cretaceous is summarized as to the potential for overland mammalian dispersal between these places at those times. Paleoclimatic reconstructions are considered, as is the dispersal history of hadrosaurine dinosaurs and boid snakes, as to their contribution to an appraisal of mammalian dispersals in the Late Cretaceous. In addition, we present a revision of the South American component of the Marsupialia. One major outcome of this process is that the Polydolopimorphia is placed as Supercohort Marsupialia incertae sedis because no characteristics currently known from this clade securely place it within one of the three named marsupial cohorts.  相似文献   

2.
Newly described marsupial specimens of Judithian (late Campanian) and Lancian (Maastrichtian) age in the western interior of North America (Wyoming to Alberta) have dental morphologies consistent with those expected in comparably aged sediments in South America (yet to be found). Three new Lancian species are referable to the didelphimorphian Herpetotheriidae, which suggests that the ameridelphian radiation was well under way by this time. The presence of a polydolopimorphian from Lancian deposits with a relatively plesiomorphic dental morphology and an additional polydolopimorphian taxon from Judithian deposits with a more derived molar form indicate that this lineage of typically South American marsupials was diversifying in the Late Cretaceous of North America. This study indicates that typical South American lineages (e.g. didelphimorphians and polydolopimorphians) are not the result of North American peradectian progenitors dispersing into South America at the end of the Cretaceous (Lancian), or at the beginning of the Paleocene (Puercan), and giving rise to the ameridelphian marsupials. Instead, these lineages, and predictably others as well, had their origins in North America (probably in more southerly latitudes) and then dispersed into South America by the end of the Cretaceous. Geophysical evidence concerning the connections between North and South America in the Late Cretaceous is summarized as to the potential for overland mammalian dispersal between these places at those times. Paleoclimatic reconstructions are considered, as is the dispersal history of hadrosaurine dinosaurs and boid snakes, as to their contribution to an appraisal of mammalian dispersals in the Late Cretaceous. In addition, we present a revision of the South American component of the Marsupialia. One major outcome of this process is that the Polydolopimorphia is placed as Supercohort Marsupialia incertae sedis because no characteristics currently known from this clade securely place it within one of the three named marsupial cohorts. This article contains corrections to the text and a new Figure 11 not incorporated in the originally published version in Vol. 11, Nos. 3/4. For purposes of future citation, the present version (Vol. 12 and Nos. 3/4) should be used.  相似文献   

3.
The Amazon lowland rainforest flora is conventionally viewed as comprising lineages that evolved in biogeographic isolation after the split of west Gondwana (ca. 100 Myr ago). Recent molecular phylogenies, however, identify immigrant lineages that arrived in South America during its period of oceanic isolation (ca. 100-3 Myr ago). Long-distance sweepstakes dispersal across oceans played an important and possibly predominant role. Stepping-stone migration from Africa and North America through hypothesized Late Cretaceous and Tertiary island chains may have facilitated immigration. An analysis of inventory plot data suggests that immigrant lineages comprise ca. 20% of both the species and individuals of an Amazon tree community in Ecuador. This is more than an order of magnitude higher than previous estimates. We also present data on the community-level similarity between South American and palaeotropical rainforests, and suggest that most taxonomic similarity derives from trans-oceanic dispersal, rather than a shared Gondwanan history.  相似文献   

4.
A review of paleontological, phyletic, geophysical, and climatic evidence leads to a new scenario of land mammal dispersal among South America, Antarctica, and Australia in the Late Cretaceous to early Tertiary epochs. New fossil land vertebrate material has been recovered from all three continents in recent years. As regards Gondwana, the present evidence suggests that monotreme mammals and ratite birds are of Mesozoic origin, based on both geochronological and phyletic grounds. The occurrence of monotremes in the early Paleocene (ca. 62 Ma) faunas of Patagonia and of ratites in late Eocene (ca. 41-37 m.y.) faunas of Seymour Island (Antarctic Peninsula) probably is an artifact of a much older and widespread Gondwana distribution prior to the Late Cretaceous Epoch. Except for South American microbiotheres being australidelphians, marsupial faunas of South America and Australia still are fundamentally disjunct. New material from Seymour Island (Microbiotheriidae) indicates the presence there of a derived taxon that resides in a group that is the sister taxon of most Australian marsupials. There is no compelling evidence that dispersal between Antarctica and Australia was as recent as ca. 41 Ma or later. In fact, the derived marsupial and placental land mammal fauna of Seymour Island shows its greatest affinity with Patagonian forms of Casamayoran age (ca. 51–54 m.y.). This suggests an earlier dispersal of more plesiomorphic marsupials from Patagonia to Australia via Antarctica, and vicariant disjunction subsequently. This is consistent with geophysical evidence that the South Tasman Rise was submerged by 64 Ma and with geological evidence that a shallow water marine barrier was present from then onward. The scenario above is consistent with molecular evidence suggesting that australidelphian bandicoots, dasyurids, and diprotodontians were distinct and present in Australia at least as early as the 63-Ma-old australidelphian microbiotheres and the ancient but not basal australidelphian,Andinodelphys, in the Tiupampa Fauna of Bolivia. Land mammal dispersal to Australia typically has been considered to be at a low level of probability (e.g., by sweepstakes dispersal). This study suggests that the marsupial colonizers of Australia included already recognizable members of the Peramelina, Dasyuromorphia, and Diprotodontia, at least, and entered via a filter route rather than by a sweepstakes dispersal.To whom correspondence should be addressed.  相似文献   

5.
The first record of an undoubted opossum-like marsupial from the Mesozoic of Europe indicates an invasion from North America at the end of Late Cretaceous (Maastrichtian). The new 66.1 million-year-old marsupial, Maastrichtidelphys meurismeti n. gen., n. sp., represented by a right upper molar, comes from the type Maastrichtian of The Netherlands. The Maastricht marsupial exhibits affinities with earlier (early Maastrichtian) North American herpetotheriids providing definitive evidence of a high-latitude North Atlantic dispersal route between North America and Europe during the latest Cretaceous. Previously, the first major interchange for marsupials was thought to have occurred nearly 10 million years later in the Eocene. The occurrence of this new marsupial in Europe implies that at some time during the latest Cretaceous, sea level and climatic conditions must have been sufficiently favorable to allow for such a high-latitude dispersal. The fragmentary remains of hadrosaurid and theropod dinosaurs, as well as boid snakes from northwestern Europe which have affinities with North American taxa help substantiate assumptions made by the occurrence of the herpetotheriid marsupial in Maastricht.  相似文献   

6.
Genetic relationships among 25 species of Central and South American Bufo and among representative North, Central, and South American, Asian, and African Bufo were probed, using the quantitative immunological technique of microcomplement fixation (MC'F) which indicated a clear separation of North, Central, and South American lineages of Bufo. The South American lineage likely diverged from the Central and North American lineages in the Eocene; the latter two lineages diverged later, probably in the mid-Oligocene. Some species groups of South American toads, defined on the basis of traditional morphological studies, are genetically quite similar within groups, whereas others are genetically divergent. The amount of albumin evolution does not appear to parallel the amount of karyotypic, morphological, ecological, or behavioral evolution documented. Comparisons suggest that the African lineages separated from the American and Asian lineages in the late Cretaceous, corresponding to the time of the final separation of Gondwanaland, the southern supercontinent including the modern continents of South America, Africa, Australia, Antarctica, and India. The Asian lineages diverged from the lineage giving rise to all of the American species in the early Paleocene.   相似文献   

7.
“Anilioidea” is a likely paraphyletic assemblage of pipe snakes that includes extant Aniliidae from equatorial South America, Uropeltoidea from South and Southeast Asia, and a fossil record that consists primarily of isolated precloacal vertebrae ranging from the earliest Late Cretaceous and includes geographic distributions in North America, South America, Europe, and Africa. Articulated precloacal vertebrae from the middle Eocene Bridger Formation of Wyoming, attributed to Borealilysia nov. gen., represent an unambiguous North American aniliid record and prompts a reconsideration of described pipe snakes and their resultant biogeographic histories. On the basis of vertebral apomorphies, the vast majority of reported fossils cannot be assigned to “Anilioidea”. Instead, most records represent stem taxa and macrostomatans erroneously assigned to anilioids on the basis of generalized features associated with fossoriality. A revised fossil record demonstrates that the only extralimital distributions of fossil “anilioids” consist of the North American aniliid record, and there is no unambiguous fossil record of Old World taxa. The occurrence of aniliids in the mid-high latitudes of the late early Eocene of North America is consistent with histories of northward shifts in equatorial ecosystems during the early Paleogene Greenhouse.  相似文献   

8.
Neither pre-Cenozoic crown eutherian mammals (placentals) nor archaic ungulates (“condylarths”) are known with certainty based on the fossil record. Herein we report a new species of the Paleocene archaic ungulate (“condylarth”) Protungulatum from undisputed Late Cretaceous aged rocks in Montana USA based on an isolated last upper premolar, indicating rare representatives of these common early Tertiary mammals appeared in North America a minimum of 300 k  years before the extinction of non-avian dinosaurs. The other 1200 mammal specimens from the locality are characteristic Late Cretaceous taxa. This discovery overturns the current hypothesis that archaic ungulates did not appear in North America until after the Cretaceous/Tertiary (K/T) boundary and also suggests that other reports of North American Late Cretaceous archaic ungulates may be correct. Recent studies, including ours, cannot determine whether Protungulatum does or does not belong to the crown clade Placentalia.  相似文献   

9.
Aim The evolutionary history of bees is presumed to extend back in time to the Early Cretaceous. Among all major clades of bees, Colletidae has been a prime example of an ancient group whose Gondwanan origin probably precedes the complete break‐up of Africa, Antarctica, Australia and South America, because modern lineages of this family occur primarily in southern continents. In this paper, we aim to study the temporal and spatial diversification of colletid bees to better understand the processes that have resulted in the present southern disjunctions. Location Southern continents. Methods We assembled a dataset comprising four nuclear genes of a broad sample of Colletidae. We used Bayesian inference analyses to estimate the phylogenetic tree topology and divergence times. Biogeographical relationships were investigated using event‐based analytical methods: a Bayesian approach to dispersal–vicariance analysis, a likelihood‐based dispersal–extinction–cladogenesis model and a Bayesian model. We also used lineage through time analyses to explore the tempo of radiations of Colletidae and their context in the biogeographical history of these bees. Results Initial diversification of Colletidae took place at the Late Cretaceous (≥ 70 Ma). Several (6–14) lineage exchanges between Australia and South America via Antarctica during the Late Cretaceous and Eocene epochs could explain the disjunctions observed between colletid lineages today. All biogeographical methods consistently indicated that there were multiple lineage exchanges between South America and Australia, and these approaches were valuable in exploring the degree of uncertainty inherent in the ancestral reconstructions. Biogeographical and dating results preclude an explanation of Scrapterinae in Africa as a result of vicariance, so one dispersal event is assumed to explain the disjunction in relation to Euryglossinae. The net diversification rate was found to be highest in the recent history of colletid evolution. Main conclusions The biogeography and macroevolutionary history of colletid bees can be explained by a combination of Cenozoic vicariance and palaeoclimatic changes during the Neogene. The austral connection and posterior break‐up of South America, Antarctica and Australia resulted in a pattern of disjunct sister lineages. Increased biome aridification coupled with floristic diversification in the southern continents during the Neogene may have contributed to the high rates of cladogenesis in these bees in the last 25–30 million years.  相似文献   

10.
Rhynchocephalian lepidosaurs, though once widespread worldwide, are represented today only by the tuatara (Sphenodon) of New Zealand. After their apparent early Cretaceous extinction in Laurasia, they survived in southern continents. In South America, they are represented by different lineages of Late Cretaceous eupropalinal forms until their disappearance by the Cretaceous/Palaeogene (K/Pg) boundary. We describe here the only unambiguous Palaeogene rhynchocephalian from South America; this new taxon is a younger species of the otherwise Late Cretaceous genus Kawasphenodon. Phylogenetic analysis confirms the allocation of the genus to the clade Opisthodontia. The new form from the Palaeogene of Central Patagonia is much smaller than Kawasphenodon expectatus from the Late Cretaceous of Northern Patagonia. The new species shows that at least one group of rhynchocephalians not related to the extant Sphenodon survived in South America beyond the K/Pg extinction event. Furthermore, it adds to other trans-K/Pg ectotherm tetrapod taxa, suggesting that the end-Cretaceous extinction affected Patagonia more benignly than the Laurasian landmasses.  相似文献   

11.
The Glyptodontidae is one of the most conspicuous groups in the Pleistocene megafauna of the Americas. The Glyptodontinae were involved in the Great American Biotic Interchange (GABI) and their earliest records in North America are about 3.9 Ma, suggesting an earlier formation of the Panamanian landbridge. Taxonomically it is possible to recognize two Pleistocene genera of Glyptodontinae:Glyptodon (ca. 1.8 – 0.008 Ma), restricted to South America, andGlyptotherium (ca. 2.6 – 0.009 Ma), including records in both North and Central America. Here we present the first report of the genusGlyptotherium in South America, from the Late Pleistocene of several fossil localities in Falcón State, northwestern Venezuela. A comparative analysis of the material, represented by cranial and postcranial parts, including the dorsal carapace and caudal rings, suggests a close affinity withGlyptotherium cylindricum (Late Pleistocene of Central Mexico). This occurrence in the latest Pleistocene of the northernmost region of South America Supports the bidirectional faunal migration during the GABI and the repeated re-immigration from North America of South American clades, as has been reported in other members of the Cingulata (e.g., Pampatheriidae).   相似文献   

12.
Late Mesozoic palaeobiogeography has been characterized by a distinction between the northern territories of Laurasia and the southern landmasses of Gondwana. The repeated discovery of Gondwanan lineages in Laurasia has led to the proposal of alternative scenarios to explain these anomalous occurrences. A new biogeographical model for late Mesozoic terrestrial ecosystems is here proposed in which Europe and "Gondwanan" territories possessed a common Eurogondwanan fauna during the earliest Cretaceous. Subsequently, following the Hauterivian, the European territories severed from Africa and then connected to Asiamerica resulting in a faunal interchange. This model explains the presence of Gondwanan taxa in Laurasia and the absence of Laurasian forms in the southern territories during the Cretaceous. In order to test this new palaeobiogeographical model, tree reconciliation analyses (TRAs) were performed based on biogeographical signals provided by a supertree of late Mesozoic archosaurs. The TRAs found significant evidence for the presence of an earliest Cretaceous Eurogondwanan fauna followed by a relatively short-term Gondwana-Laurasia dichotomy. The analysis recovered evidence for a biogeographical reconnection of the European territories with Africa and South America-Antarctica during the Campanian to Maastrichtian time-slice. This biogeographical scenario appears to continue through the early Tertiary and sheds light on the trans-Atlantic disjunct distributions of several extant plant and animal groups.  相似文献   

13.
We add to the knowledge of the dentition and lower jaw of the primitive marsupial or near marsupial, Kokopellia juddi, based on newly collected materials from the medial Cretaceous (Albian–Cenomanian) of central Utah. The dental formula, i4 c1 p3 m4, is primitive for (or with respect to) Marsupialia, as are a number of features of the dentary and dentition: presence of a labial mandibular foramen, ?an inflected angle, ?and a trace of the meckelian groove; lack of “staggering” of the lower incisor series; lack of “twinning” between entoconid and hypoconulid on lower molars; incompletely lingual position of lower molar paraconid; upper molar protocone relatively small and mesiodistally narrow; and conules placed about halfway between the protocone and the paracone–metacone. Other than the stylocone, cusps are lacking from the stylar shelf; we argue that this represents the primitive marsupial condition based on the economy of character change and the stratigraphic record of marsupials in the Cretaceous of North America. Recent discoveries of early marsupials, eutherians, and therians of metatherian–eutherian grade provide data indicating that some derived features of the dentary and dentition (e.g., loss of coronoid, meckelian groove, and labial mandibular foramen; acquisition of strong, “winged” conules, double rank postvallum/prevallid shearing, and stylar cusp D) probably arose independently, in some cases more than once, among the major groups of tribosphenic mammals. In turn, this suggests that a common ancestor for marsupials and placentals was more primitive than has generally been appreciated.  相似文献   

14.
Sauropod dinosaurs have been found in sediments dating to most of the Cretaceous Period on all major Mesozoic landmasses, but this record is spatiotemporally uneven, even in relatively well-explored North American sediments. Within the 80 million-year-span of the Cretaceous, no definitive sauropod occurrences are known in North America from two ca. 20–25 million-year-long gaps, one from approximately the Berriasian–Barremian and the other from the mid-Cenomanian–late Campanian. Herein, we present an undescribed specimen that was collected in the middle part of the twentieth century that expands the known spatiotemporal distribution of Early Cretaceous North American sauropods, partially filling the earlier gap. The material is from the Berriasian–Valanginian-aged (ca. 139 Ma) Chilson Member of the Lakota Formation of South Dakota and appears to represent the only non-titanosauriform from the Cretaceous of North America or Asia. It closely resembles Camarasaurus and may represent a form closely related to that genus that persisted across the Jurassic–Cretaceous boundary.  相似文献   

15.
We investigated genetic variation in asexual polyploid members of the water flea Daphnia pulex complex from a set of 12 Bolivian high-altitude lakes. We used nuclear microsatellite markers to study genetic relationships among all encountered multilocus genotypes, and combined this with a phylogenetic approach using DNA sequence data of three mitochondrial genes. Analyses of mitochondrial gene sequence divergence showed the presence of three very distinct clades that likely represent cryptic undescribed species. Our phylogenetic results suggest that the Daphnia pulicaria group, a complex of predominantly North American species that has diversified rapidly since the Pleistocene, has its origin in South America, as specific tests of topology indicated that all three South American lineages are ancestral to the North American members of this species group. A comparison between variation of nuclear and mitochondrial markers revealed that closely related polyploid nuclear genotypes sometimes belonged to very divergent mitochondrial lineages, while distantly related nuclear genotypes often belonged to the same mitochondrial lineage. This discrepancy suggests that these South American water fleas originated through reciprocal hybridization between different endemic, sexually reproducing parental lineages. It is also likely that polyploidy of the investigated lineages resulted from this hybridization. Nevertheless, no putative diploid parental lineages were found in the studied region.  相似文献   

16.
The origin of endemic South American canid fauna has been traditionally linked with the rise of the Isthmus of Panama, suggesting that diversification of the dog fauna on this continent occurred very rapidly. Nevertheless, despite its obvious biogeographic appeal, the tempo of Canid evolution in South America has never been studied thoroughly. This issue can be suitably tackled with the inference of a molecular timescale. In this study, using a relaxed molecular clock method, we estimated that the most recent common ancestor of South American canids lived around 4 Ma, whereas all other splits within the clade occurred after the rise of the Panamanian land bridge. We suggest that the early diversification of the ancestors of the two main lineages of South American canids may have occurred in North America, before the Great American Interchange. Moreover, a concatenated morphological and molecular analysis put some extinct canid species well within the South American radiation, and shows that the dental adaptations to hypercarnivory evolved only once in the South American clade.  相似文献   

17.
The biogeographic affinities of the Cretaceous and early Tertiary angiosperm floras of the North American area (which includes Meso-America, and the Greater Antilles) have been the subject of considerable interest. Although recent treatments of isolated taxa have shown affinities between North American, European, east Asian and Neotropic floras, the relationships have not been quantified. This study compiles the records of fossils whose familial relationships seem secure. This provides a carefully culled, and uniformly presented review of the Cretaceous and Paleogene record from 1950 to 1989 and supplements LaMotte (1950). A subset of these records, which showed compelling evidence of subfamilial relationships, was analyzed to quantify the relationships of the Cretaceous, Paleocene, Eocene and Oligocene floras to other regions. The analysis suggests that for the entire period 24% of the fossil species had affinities with extant taxa from the Northern Hemisphere; 10% with taxa from the Northern Hemisphere that have a few species in South America; 17% with taxa from Eurasia; 3% with taxa with a disjunct Eurasian-South American pattern; 19% with taxa from South America and/or Africa; 8% with taxa from South America and/or Africa that have an important sister group in southeast Asia; 5% with taxa from the Old World; and 13% with taxa having other distribution patterns. Those fossils with affinities to Laurasian taxa are mostly found in the northern and western portions of the North American area. The fossils with affinities to South American and/or African taxa are found in the southern portions of North America, Meso-America, and the Greater Antilles. The taxa with disjunct distributions show both patterns. These patterns suggest that during this time there were wide-spread temperate elements, found throughout Laurasia; Boreotropical flora elements, distributed in North America, Europe and along the Tethys seaway to southeast Asia; and West Gondwana elements which show dispersion from South America across the proto-Caribbean. The paleobotanical data are compatible with current geological, paleontological and biogeographical studies.  相似文献   

18.
Although the deserts of North America are of very recent origin, their characteristic arid-adapted endemic plant lineages have been suggested to be much older. Earlier researchers have hypothesized that the ancestors of many of these modern desert lineages first adapted to aridity in highly localized arid or semi-arid sites as early as the late Cretaceous or early Tertiary, and that these lineages subsequently spread and diversified as global climate became increasingly arid during the Cenozoic. No study has explicitly examined these hypotheses for any North American arid-adapted plant group. The current paper tests these hypotheses using the genus Tiquilia (Boraginaceae), a diverse North American desert plant group. A strongly supported phylogeny of the genus is estimated using combined sequence data from three chloroplast markers (matK, ndhF, and rps16) and two nuclear markers (ITS and waxy). Ages of divergence events within the genus are estimated using penalized likelihood and a molecular clock approach on the ndhF tree for Tiquilia and representative outgroups, including most of the major lineages of Boraginales. The dating analysis suggests that the stem lineage of Tiquilia split from its nearest extant relative in the Paleocene or Eocene ( approximately 59-48 Ma). This was followed by a relatively long period before the first divergence in the crown group near the Eocene/Oligocene boundary ( approximately 33-29 Ma), shortly after the greatest Cenozoic episode of rapid aridification. Divergence of seven major lineages of Tiquilia is dated to the early-to-mid Miocene ( approximately 23-13 Ma). Several major lineages show a marked increase in diversification concomitant with the onset of more widespread semi-arid and then arid conditions beginning in the late Miocene ( approximately 7 Ma). This sequence of divergence events in Tiquilia agrees well with earlier researchers' ideas concerning North American desert flora assembly.  相似文献   

19.
Diverse metatherian and eutherian tarsal remains from the Late Cretaceous (middle-late Turonian) Bissekty Formation, Kyzylkum Desert, Uzbekistan (ca 90 MYA) are described. Their functional and taxonomic properties, along with those of other tarsal evidence, led to a reassessment of polarity hypotheses of therian, metatherian, and eutherian cruropedal attributes, and the consequences of this for phylogeny of taxa. There are calcaneal remains of several types of marsupials, and a single astragalus that probably belongs to one of these. This represents greater taxonomic diversity than the dental record suggests. Exceptionally large and distally extending peroneal processes, and small and steeply angled calcaneocuboid articulations facing mediodistally, as seen in the Early Cretaceous Sinodelphys and other Cretaceous and Paleogene taxa, attest not only to the metatherian status of these specimens, but also to the retention of many ancestral therian features, even more so than in both the Tiupampa and Itaboraí marsupials of the South American Paleocene (both the calcanea and the astragalus suggest therian traits that are decidedly unlike those of symmetrodonts). Calcanea allocated to the deltatherioid species at Bissekty testify unequivocally to their metatherian affinity. The morphology of the best represented sample of eutherian calcanea from Bissekty, presumably of a number of zhelestid species, appears to be more derived than that of the Late Cretaceous/Paleocene Protungulatum in having a much more reduced peroneal process and a calcaneocuboid articulation that faces distally, oriented nearly at a 90° angle to the long axis of the calcaneus. In fact, this distally facing facet, common in later eutherians (except for lineages in the Paleogene record, and various Carnivora), may not be diagnostic of either the protoeutherian, or even of the protoplacentalian, in spite of its presence in Eomaia. Many putatively “basal” lineages have derived characters, hence such outgroups should not be considered the unequivocal repositories of only ancestral character states.  相似文献   

20.
Aim In order to resolve disputed biogeographical histories of biota with Gondwanan continental distributions, and to assess the null hypothesis of vicariance, it is imperative that a robust geological time‐frame be established. As an example, the sudden and coincident appearance of hystricognath rodents (Rodentia: Hystricognathi) on both the African and South American continents has been an irreconcilable controversy for evolutionary biologists, presenting enigmas for both Gondwanan vicariance and Late Eocene dispersal hypotheses. In an attempt to resolve this discordance, we aim to provide a more robust phylogenetic hypothesis and improve divergence‐date estimates, which are essential to assessing the null hypothesis of vicariance biogeography. Location The primary centres of distribution are in Africa and South America. Methods We implemented parsimony, maximum‐likelihood and Bayesian methods to generate a phylogeny of 37 hystricognath taxa, the most comprehensive taxonomic sampling of this group to date, on the basis of two nuclear gene regions. To increase phylogenetic resolution at the basal nodes, these data were combined with previously published data for six additional nuclear gene regions. Divergence dates were estimated using two relaxed‐molecular‐clock methods, Bayesian multidivtime and nonparametric rate smoothing. Results Our data do not support reciprocal monophyly of African and South American lineages. Indeed, Old World porcupines (i.e. Hystricomorpha) appear to be more closely related to New World lineages (i.e. Caviomorpha) than to other Old World families (i.e. Bathyergidae, Petromuridae and Thryonomyidae). The divergence between the monophyletic assemblage of South American lineages and its Old World ancestor was estimated to have occurred c. 50 Ma. Main conclusions Our phylogenetic hypothesis and divergence‐date estimates are strongly at odds with Gondwanan‐vicariance isolating mechanisms. In contrast, our data suggest that transoceanic dispersal has played a significant role in governing the contemporary distribution of hystricognath rodents. Molecular‐clock analyses imply a trans‐Tethys dispersal event, broadly confined to the Late Cretaceous, and trans‐Atlantic dispersal within the Early Eocene. Our analyses also imply that the use of the oldest known South American rodent fossil as a calibration point has biased molecular‐clock inferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号