首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serial passage of pseudorabies virus (PrV) at high multiplicity yields defective interfering particles (DIPs), but the sharp cyclical increases and decreases in titer of infectious virus that are observed upon continued passage at high multiplicity of most DIPs of other viruses are not observed with DIPs of PrV (T. Ben-Porat and A. S. Kaplan, Virology 72:471-479). We have studied the dynamics of the interactions of the virions present in a population of DIPs to assess the cis functions for which the genomes of the DIPs are enriched. The defective genomes present in one population of DIPs, [PrV(1)42], replicate preferentially over the nondefective genomes present in that virion population at early stages of infection, indicating that the DIP DNA is enriched for sequences that can serve as origins of replication at early stages of infection. This replicative advantage of the DIP DNA is transient and disappears at later stages of infection. The defective DNA does not appear to be encapsidated preferentially over the nondefective DNA present in this virion population, which might indicate that it is not enriched for cleavage-encapsidation sites. However, the nondefective DNA in the DIP virion population has become modified and has acquired reiterations of sequences originating from the end of the unique long (UL) region of the genome. Furthermore, both the infectious and defective genomes present in the DIP population compete for encapsidation more effectively than do the genomes of standard PrV. These results indicate that the defective genomes in the population of virions studied are enriched not only for an origin of replication but probably also for sequences necessary for efficient cleavage-encapsidation. Furthermore, the nondefective genomes present in this population of DIPs have also been modified and have acquired the ability to compete with the defective genomes for cleavage-encapsidation.  相似文献   

2.
3.
The structure of a newly and independently isolated defective variant of simian virus 40 that contains covalently linked monkey and SV40 DNA sequences is described. This variant, termed 290, has a structure essentially identical with a previously isolated and characterized variant named CVP8/1/P2 (Eco RI res). The structural similarities include the monkey (host) DNA segment that is combined with viral DNA sequences, the particular viral DNA segment that is present, and the arrangement of these within the defective genome. The monkey DNA segment contains sequences derived from both low and high reiteration frequency monkey DNA. The viral sequences include the origin of replication. The separate isolation of essentially identical variants suggests a high level of specificity in the events leading to the formation and amplification of this type of defective genome.  相似文献   

4.
The nucleotide sequences of the termini of the mature pseudorabies virus genome and of the junction between these termini in concatemeric DNA were compared. To ensure conservation of unmodified 5' and 3' termini, the end fragments obtained directly (uncloned) from mature viral DNA were sequenced. The sequence obtained from 5' and 3' end labeling revealed that whereas the L terminus was blunt ended, the S terminus had a 2-base (GG) 3' overhang. The sequences spanning the junction between the termini present in concatemeric DNA was also determined and compared with that expected when the two ends of the mature DNA were juxtaposed. This comparison showed that in concatemeric DNA the ends of the mature genome had become joined by blunt-end ligation of one of the strands and that the 2-nucleotide gap on the other strand had been repaired. A significant degree of homology between the sequences spanning the junction between the ends of the varicella-zoster virus and pseudorabies virus genomes was found.  相似文献   

5.
The DNA of herpesvirus pan, a primate B-lymphotropic herpesvirus, shares about 40% well-conserved sequence relatedness with Epstein-Barr virus (EBV) and herpesvirus papio DNAs. Labeled cloned fragments from the EBV recombinant DNA library were cross hybridized to blots of EcoRI, XbaI, and BamHI restriction endonuclease fragments of herpesvirus pan DNA to identify and map homologous sequences in the herpesvirus pan genome. Regions of colinear homology were demonstrated between 6 x 10(6) daltons and 108 x 10(6) daltons in the DNAs. The structural organization of herpesvirus pan DNA was similar to the format of Epstein-Barr virus and herpesvirus papio DNAs. The DNA consists of two domains of largely unique sequence complexity, a segment US of 9 x 10(6) daltons and a segment UL of 88 x 10(6) daltons. US and UL are separated by a variable number of tandem repetitions of a sequence IR (2 x 10(6) daltons). There was homology between DNA which mapped at 26 to 28 x 10(6) daltons and 93 to 95 x 10(6) daltons in UL. The terminal reiteration component, TR, of herpesvirus pan DNA and sequences which mapped to the left of 6 x 10(6) daltons and to the right of 108 x 10(6) daltons had no detectable homology with the corresponding regions of Epstein-Barr virus DNA.  相似文献   

6.
The chromosome of Bacillus subtilis phage 2C is a 100-MDa double-stranded DNA molecule, containing hydroxymethyluracil in place of thymine and carrying redundant ends each encompassing 10% of the genome. 2C DNA was cleaved with EcoRI and HindIII, and cloned in the shuttle plasmids pSC 540 and pCP 115, both containing segments originating from B. subtilis and Escherichia coli plasmids. These chimaerical plasmids, carrying the chloramphenicol resistance gene, were unable to replicate in B. subtilis; this ability was restored, however, after the insertion of viral DNA segments. Physical maps of the recombinant plasmids were made; a large deletion of the E. coli-derived segment of pSC 540 was observed (which paralleled a loss of replication in this host), whereas addition of 2C DNA segments in pCP 115 was not accompanied by deletion (replication in E. coli was conserved in this case). Cloned viral segments mapped mostly, but not exclusively, within the redundant ends of 2C DNA. It is suggested that the thirteen recombinant clones carried the replication origin region of phage 2C DNA, and that these sequences originated within or close to the redundant extremities of the viral chromosome.  相似文献   

7.
As part of a study designed to identify the genes responsible for the virulence of pseudorabies virus, we have mapped the genomes of two independently derived vaccine strains (Bartha and Norden) by restriction enzyme analysis. The structures of these genomes have been compared with that of the genome of a laboratory strain previously mapped, of restriction fragments which had been cloned. The genome of the Bartha strain was found to be very similar to that of other pseudorabies virus strains, except that a deletion of approximately 2.7 X 10(6) daltons was found in the unique short (US) region. This deletion was also observed in the genome of the Norden vaccine strain but was not observed in the genomes of any other pseudorabies virus strains that have been studied (more than 20). The genome of the Norden strain differs from that of other pseudorabies virus strains in several other respects as well. The most important difference is that in contrast to all other pseudorabies virus strains analyzed to date, which contain a type 2 herpesvirus DNA molecule (in which the US region only inverts itself relative to the unique long [UL] region), the genome of the Norden strain is a type 3 molecule in which both the US and the UL regions of the genome invert themselves, giving rise to four isomeric forms of the genome. The ability of the UL region to invert itself is probably related to the fact that a sequence normally present in all other pseudorabies virus strains at the end of the UL only is found also in inverted form at the junction of the UL and the internal inverted repeat in the Norden strain.  相似文献   

8.
M Rosenberg  S Segal  E L Kuff  M F Singer 《Cell》1977,11(4):845-857
DNA fragments containing monkey DNA sequences have been isolated from defective SV40 genomes that carry host sequences in place of portions of the SV40 genome. The fragments were isolated by restriction endonuclease cleavage and contain segments homologous to sequences in both the highly repetitive and unique (or less repetitive) classes of monkey DNA. The complete nucleotide sequence of one such fragment [151 base pairs (bp)] predominantly homologous to the highly reiterated class of monkey DNA was determined using both RNA and DNA sequencing methods. The nucleotide sequence of this homogeneous DNA segment does not contain discernible multiple internal repeating units but only a few short oligonucleotide repeats. The reiteration frequency of the sequence in the monkey genome is >106. Digestion of total monkey DNA (from uninfected cells) with endonuclease R Hind III produces relatively large amounts of discrete DNA fragments that contain extensive regions homologous to the fragment isolated from the defective SV40 DNA.A second fragment, also containing monkey sequences, was isolated from the same defective substituted SV40 genome. The nucleotide sequence of the 33 bp of this second fragment that are contiguous to the 151 bp fragment has also been determined.The sequences in both fragments are also present in other, independently derived, defective substituted SV40 genomes.  相似文献   

9.
It has been shown earlier that the reiterated regions TRS and IRS bracketing the Us segment of herpes simplex virus type 1 Angelotti DNA are heterogeneous in size by stepwise insertion of one to six copies of a 550-base-pair nucleotide sequence. Considerably higher amplification of this sequence was observed in defective viral DNA: up to 14 copies were detected to be inserted in the repeat units of a major class of defective herpes simplex virus type 1 Angelotti DNA, dDNA1, which originated from noncontiguous sites located in UL and the inverted repeats of the S component of the parental genome. Physical maps were established for the cleavage sites of KpnI, PstI, XhoI, and BamHI restriction endonucleases on the repeats of dDNA1. The map position of the insertion sequence was determined. It was demonstrated that the amplified inserts were not distributed at random among or within the repeats. A given total population of dDNA1 molecules consisted of different homopolymers, each of which contained a constant number of inserts in all of its repeats. Assuming that a rolling-circle mechanism is involved in the generation of full-length defective herpes simplex virus type 1 Angelotti DNA from single repeat units, these data suggest that the 550-base-pair sequence is amplified in the repeats before the replication process.  相似文献   

10.
The structure of the polyoma virus defective species D74 (74% the size of full-length polyoma virus DNA) has been determined and compared with that of polyoma virus A2 DNA. D74 appears to be composed entirely of viral DNA sequences. (No host DNA sequences have been detected.) It is made up of three DNA segments, each about 24, 24 and 27% in size. The two 24% segments appear to be identical and the 27% segment contains one copy of all the sequences found in the 24% fragments as well as a duplication of some of the sequences. When related to the physical map of A2 DNA, each segment is found to be composed of viral sequences from 1 to about 19 map units, 67 to 69 map units and 70 to 72 map units.Three features found in other polyoma virus defective species (Lund et al., 1977) are also present in D74. (1) Sequences from the region around 67 map units are linked to other (non-contiguous) viral sequences. (2) Sequences at about 72 map units are linked to sequences at 1 map unit. (3) Multiple copies of sequences from around the origin of viral DNA replication are present. From studies on other polyoma defective molecules (Griffin &; Fried, 1975; Lund et al., 1977), the origin of DNA replication for polyoma virus has been defined to lie within the sequences from 67 to 72 map units. Since D74 replicates efficiently but lacks the sequences between 69 to 70 map units, the origin of DNA replication appears to be further defined as lying within 67 and 69 map units and/or 70 to 72 map units.  相似文献   

11.
The sequences of several hundred nucleotides around the junctions between the L and S components in concatemeric DNA and in mature virion DNA were ascertained. The two ends of the mature genome (which are joined in concatemeric DNA) show no sequence homology. Several directly repeated elements are present near both ends of the genome. Furthermore, the last 82 nucleotides at the left end of the L component (and of the genome) are repeated in inverted form (inverted repeat within the L component [IRL]) approximately 350 to 600 nucleotides downstream (depending on the virus isolate) bracketing the UL2 component. A comparison between the sequences at the right and left ends of the L component of the genome showed patchy homology, probably representing a vestigial inverted repeat bracketing the L component (IRL). Furthermore, less than 5% of the genomes have an L component that is in the orientation opposite to that of most of the viral genomes, indicating that the vestigial IRL that brackets the UL sequence may be sufficient to mediate inversion of the L component in some of the genomes. On the other hand, the UL2 component, which is bracketed by a perfect IRL, does not invert to a greater extent than does the L component (if it inverts at all). Analysis of the nucleotide sequence at the concatemeric junction of three different pseudorabies virus isolates showed almost complete sequence conservation. The sequence and organization of the repeated elements in the different isolates were almost identical, despite their different histories and origins. The high degree of conservation of these repeated elements implies that they may fulfill an essential function in the life cycle of the virus.  相似文献   

12.
Among the Epstein-Barr virions (EBV) produced by the P3HR-1 (HR-1) cell line are a defective subpopulation with rearranged viral DNA designated heterogeneous DNA (het DNA). These defective virions are responsible for the capacity of HR-1 virus to induce early antigen in Raji c cells and for trans activation of latent EBV in X50-7 cells. Virions with het DNA are independent replicons which pass horizontally from cell to cell rather than being partitioned vertically. We analyzed the structure and defined several polypeptide products of het DNA to understand these remarkable biologic properties. A 36-kilobase-pair (kbp) stretch of het DNA was cloned (as two EcoRI fragments of 20 and 16 kbp) from virions released from a cellular subclone of HR-1 cells. The unusual aspect of the 20-kbp fragment was the linkage of sequences of BamHI-M and BamHI-B', which are not adjacent on the standard EBV genome. The 16-kbp fragment was a palindrome in which at least two additional recombinations on each side of the palindrome had linked regions of the standard EBV genome which are not normally contiguous. The 20-kbp het DNA fragment was attached to at least one and possibly both ends of the 16-kbp het DNA fragment. We identified antigenic polypeptides produced in COS-1 cells after gene transfer of various cloned het DNA fragments. The 20-kbp fragment encoded a cytoplasmic antigen of about 95 kilodaltons (kDa). The 16-kbp fragment encoded antigens located in the nucleus, nuclear membrane, and cytoplasm. These were represented by several polypeptides, the most prominent of which were about 55, 52, and 36 kDa. The 36-kDa polypeptide was localized to a 2.7-kbp BamHI fragment which had homology to standard BamHI-W and BamHI-Z. Another polypeptide of 50 kDa found in the nucleus was mapped to the 7.1-kbp BamHI het DNA fragment which spans the EcoRI site linking the 20- and 16-kbp fragments of het DNA. Thus, HR-1 het DNA encodes several discrete polypeptide products, one or more of which could be responsible for the unusual biologic properties of the virus. The composition, regulation, and ultimately the expression of some of these products relative to standard EBV is probably altered by the genomic rearrangements of het DNA.  相似文献   

13.
Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of six HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensible for SV40 DNA amplification. Our results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.  相似文献   

14.
We have localized an origin of DNA replication at the L terminus of the pseudorabies virus genome. This origin differs in location as well as in general structure from the origins of replication of other herpesviruses that have been identified. The 600 leftmost nucleotides of the genome that were found to include origin function have been analyzed. This sequence is composed of an 82-bp palindrome whose center of symmetry is separated by 352 unique bp (UL2). Within the UL2, a sequence that fits the consensus sequence of the NF1 binding site, as well as one that has partial homology to the binding site of UL9 of herpes simplex virus, is present. Using truncated fragments of DNA, sequences essential for minimal origin function were delimited to within a fragment that includes the terminal 104 bp of the left end of the genome. Within these 104 bp, two elements essential to origin function have been identified. One of these elements is present within the terminal 64 bp of the L component (within one of the palindromic arms). The other is present within the 22 bp of the UL2 adjacent to this palindromic arm. Other auxiliary elements, although not essential for origin function, contribute to more efficient replication. The NF1 and UL9 binding site homologies were found to be nonessential to origin function.  相似文献   

15.
16.
In an effort to characterize sites of recombination between SV40 and monkey DNA, we have determined the primary sequence of a large portion of the SV40 variant, designated 1103. This virus contains DNA sequences derived both from the wild type SV40 genome and from the permissive monkey cell in which the virus was propagated. Further, the monkey sequences included in the defective genome are homologous to both highly repeated monkey DNA (alpha component) and sequences that are infrequently repeated in the monkey genome. The regions of the 1103 genome where DNA sequences were determined include 1) the segments of the variant that surround joints connecting SV40 and monkey sequences, 2) the segment that contains the joint between monkey sequences of high and low reiteration frequency, and 3) the DNA segment of the variant that is homologous to monkey alpha component DNA. Comparison of the data obtained from the sequences analysis of the SV40 variants 1103 and CVP8/1/P2 (EcoRI res) (described in Wakamiya, T., McCutchan, T., Rosenberg, M., and Singer, M. (1979) J. Biol. Chem 254, 3584-3591) reveals certain similarities between the two that may be involved in eukaryotic recombination and defective variant formation.  相似文献   

17.
Epstein-Barr virus (EBV), isolated from P3HR-1 cells, induces early antigen and viral capsid antigen upon infection of human B-lymphoblasts. The strong early antigen- and viral capsid antigen-inducing activity is only observed in P3HR-1 virus preparations harboring particles with defective genomes, suggesting that this biological activity is directly associated with the defective DNA population. After infection of EBV genome-carrying Raji or EBV genome-negative BJAB cells, defective genomes of P3HR-1 EBV DNA are replicated in excess, depending on the multiplicity of infecting EBV particles. Hybridization of the DNA from such infected cells with 32P-labeled EBV DNA after HindIII cleavage reveals six hypermolar fragments. Mapping of these fragments shows that they form one defective genome unit containing four nonadjacent regions (alpha, beta, gamma, and delta) of the nondefective P3HR-1 EBV DNA. Two of the segments (alpha and beta) contain ca. 17 and 13 megadaltons, respectively, from the terminal regions of the P3HR-1 genome, whereas the two smaller segments (gamma and delta) contain ca. 3.7 and 3.0 megadaltons, respectively, originating from the central portion of the genome. In the defective molecule, the regions gamma and delta are present in the opposite orientation compared with nondefective P3HR-1 EBV DNA. Tandem concatemers are formed by fusion of the alpha and beta regions. Our model suggests that tandem concatemers of three defective genome units can be packaged into virions in P3HR-1 cells.  相似文献   

18.
Multigene families in African swine fever virus: family 110.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

19.
A comparative analysis of three Epstein-Barr virus DNAs from American patients with infectious mononucleosis (B95-8, Cherry, and Lamont) and four Epstein-Barr virus DNAs from African patients with Burkitt lymphoma (AG876, W91, Raji, and P3HR-1) indicated that the usual format of Epstein-Barr virus DNA includes a variable number of direct repeats of a 0.35 X 10(6)-dalton sequence (TR) at both ends of the DNA, a 9 X 10(6)-dalton sequence of largely unique DNA (Us), a variable number of repeats of a 2 X 10(6)-dalton sequence (IR), and a 89 X 10(6)-dalton sequence of largely unique DNA (UL). Within UL there was homology between DNA at 26 X 10(6) to 28 X 10(6) daltons and DNA at 93 X 10(6) to 95 X 10(6) daltons. The relative sequence order (TR, US, IR, UL, TR) did not vary among "standard" Epstein-Barr virus DNA molecules of each isolate. B95-8 DNA had an unusual deletion extending from 91 X 10(6) to 100 X 10(6) daltons, and P3HR-1 DNA had an unusual deletion extending from 23.5 X 10(6) to 26 X 10(6) daltons. There was sufficient variability among the EcoRI and BamHI fragments of the DNAs to identify each isolate specifically. However, we discerned no distinguishing features for the two geographic or pathogenic origins of the seven isolates. Three intracellular DNAs (Raji, Lamont, and Cherry) and one virion DNA (P3HR-1) were heterogenous in molecular organization and had subpopulations of rearranged or defective molecules. Some regions, particularly 59 X 10(6) to 63 X 10(6) daltons and sequences around TR, frequently participated in rearrangements. Restriction endonuclease maps of the standard and rearranged DNAs of the seven isolates are presented.  相似文献   

20.
J Countryman  H Jenson  R Seibl  H Wolf    G Miller 《Journal of virology》1987,61(12):3672-3679
These experiments identify an Epstein-Barr virus-encoded gene product, called ZEBRA (BamHI fragment Z Epstein-Barr replication activator) protein, which activates a switch between the latent and replicative life cycle of the virus. Our previous work had shown that the 2.7-kilobase-pair WZhet piece of rearranged Epstein-Barr virus DNA from a defective virus activated replication when introduced into cells with a latent genome, but it was not clear whether a protein product was required for the phenomenon. We now use deletional, site-directed, and chimeric mutagenesis, together with gene transfer, to show that a 43-kilodalton protein, encoded in the BZLF1 open reading frame of het DNA, is responsible for this process. The rearrangement in defective DNA does not contribute to the structural gene for the protein. Similar proteins with variable electrophoretic mobility (37 to 39 kilodaltons) were encoded by BamHI Z fragments from standard, nondefective Epstein-Barr virus genomes. Plasmids expressing the ZEBRA proteins from B95-8 and HR-1 viruses were less efficient at activating replication in D98/HR-1 cells than those which contained the ZEBRA gene from the defective virus. It is not yet known whether these functional differences are due to variations in expression of the plasmids or to intrinsic differences in the activity of these polymorphic polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号