首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction.  相似文献   

2.
The feasibility of purifying subcellular membranes, especially plasma membranes, from oat roots using isoelectric focusing has been examined. Membranes from oat (Avena sativa L. cv Garry) root homogenates were fractionated using discontinuous sucrose density gradient centrifugation and then electrofocused using a microanalytical isoelectric focusing column. The column contained either a broad-range (pH 3-10) or narrow-range (pH 3-6) pH gradient stabilized by a 5 to 15% Ficoll gradient. Results from the broad-range columns confirmed that the isoelectric pH (pI) values of the membranes were in the acidic range, with pI values ranging from 3.9 to 5.2. Using narrow-range pH gradients, it was possible to fractionate further plasma membrane-enriched material obtained from a sucrose density gradient. We had no success at fractionating crude membrane preparations from oat roots. Narrow-range pH gradients generated by commercial ampholytes were more successful than those generated by acetate/acetic acid mixtures.  相似文献   

3.
Polycomplex formation of α-Amylase from Aspergillus oryzae (TAKA) with polyacrylic acid (PAA) was studied by pH titration, fluorescence, and high performance liquid chromatography (HPLC) methods in water solutions. Acording to the our results, the complex formation and its solubility were depended on nature of enzyme and the pH of solutions. Both of them correlates isoelectric points (PI). The stability of PAA–amylase complexes was negligibly weak at pH 7 [pH > pI (isoelectric pH)]. Stable water-soluble polycomplexes were formed at pH 5 (pI ~4.5) and coexisted with free protein molecules. Insoluble complexes has been observed at pH < 4.5. The frozen storage stabilities of the obtained complexes were also studied by measuring the activities at different pH.  相似文献   

4.

Background  

Glycosylation is one of the most complex post-translational modifications (PTMs) of proteins in eukaryotic cells. Glycosylation plays an important role in biological processes ranging from protein folding and subcellular localization, to ligand recognition and cell-cell interactions. Experimental identification of glycosylation sites is expensive and laborious. Hence, there is significant interest in the development of computational methods for reliable prediction of glycosylation sites from amino acid sequences.  相似文献   

5.

Background  

Amino acids in proteins are not used equally. Some of the differences in the amino acid composition of proteins are between species (mainly due to nucleotide composition and lifestyle) and some are between proteins from the same species (related to protein function, expression or subcellular localization, for example). As several factors contribute to the different amino acid usage in proteins, it is difficult both to analyze these differences and to separate the contributions made by each factor.  相似文献   

6.
Isoelectric focusing was used to study the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase in lysosomes isolated from rat kidney. The isoelectric points of the main protein and hydrolase peaks were 1-1.5 units lower when electrofocusing was done in a pH 3-10 gradient than in a pH 10-3 gradient, apparently because the lysosomal constituents aggregated strongly at their isoelectric points and tended to settle somewhat in the gradient due to gravity. In the extended pH gradient the acidic form of each hydrolase occurred as asingle, relatively discrete peak. However, when pooled acidic fractions were refocused in a restricted pH gradient (pH 6-3 or 3-5) multiple acidic enzyme and protein components were resolved with isoelectric points between 2.7 and 5.1. When autolysis was minimized by extracting lysosomal fractions at alkaline pH (0.2% Triton X-100, 0.1%p-nitrophenyloxamic acid, 0.1 M glycine buffer, pH9) and including 0.1%p-NITROPHENYLOXAMIC ACID, AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND CATHEPSIN D, in the pH gradient, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in two forms, an acidic form with an isoelectric point of about 4.4, and a basic form with an isoelectric point close to 6.2, 6.7 and 8.0, respectively. Acid phosphatase occurred in three forms with isoelectric points of 4.1, 5.6 and 7.4. When some autolytic digestion was permitted by extracting lysosomal fractions in an acidic medium (0.2% Triton X-100, 0.1 M sodium acetate buffer, pH 5.2) AT 0-4DEGREES C and omitting p-nitrophenyloxamic acid from the gradient, the acidic form of beta-glucuronidase and the intermediate form of acid phosphatase were lost, the isoelectric points of the acidic forms of acid phosphatase, arylsulfatase and beta-N-acetylhexosaminidase were increased 0.6-1.2 units, and the isoelectric point of the basic forms of acid phosphatase, arylsulfatase and beta-glucuronidase was increased 0.5 unit. When lysosomal extracts were incubated with bacterial neuraminidase before electrofocusing, the acidic forms of acid phosphatase, arylsulfatase and beta-glucuronidase were largely lost, the isoelectric point of the acidic form of beta-N-acetylhexosaminidase was increased from 4.5 to 6.4, and the isoelectric points of the basic forms of all four hydrolases were increased 0.5-1.5 units. Autoincubation of lysosomal extracts in vitro at pH 5.2 PRODUCED SIMILAR, THOUGH LESS MARKED, effects. cont'd  相似文献   

7.

Background  

Knowing the submitochondria localization of a mitochondria protein is an important step to understand its function. We develop a method which is based on an extended version of pseudo-amino acid composition to predict the protein localization within mitochondria. This work goes one step further than predicting protein subcellular location. We also try to predict the membrane protein type for mitochondrial inner membrane proteins.  相似文献   

8.
Isoelectric focusing was used to investigate the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase, beta-galactosidase and beta-N-acetylhexosaminidase in the following, previously characterized subcellular fractions from rat kidney: a special rough microsomal fraction, enriched up to 9-fold over the homogenate in acid hydrolases; a smooth microsomal fraction; a Golgi membrane fraction enriched about 2.5-fold in acid hydrolases and 10- to 20-fold in several glycosyl transferases; and a lysosomal fraction enriched up to 25-fold in acid hydrolases. The electro-focusing behavior of the hydrolases in these fractions was markedly sensitive to the autolytic changes that occur under acidic conditions, even at 4 degrees C. Autolysis was minimized by extracting fractions in an alkaline medium (0.2% Triton X-100, 0.1 M sodium glycinate buffer, pH 10, 0.1 % p-nitrophenyloxamic acid) and adding p-nitrophenyloxamic acid (0.1 %), AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND cathepsin D, to the pH gradient. The enzymes in the lysosomal fraction displayed a characteristic bimodal or trimodal distribution. Arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in an acidic form with an isoelectric point of 4.4, and a basic form with an isoelectric point of 6.2, 6.7 and 8.0, respectively. Acid phosphatase and beta-galactosidase occurred in an acidic, intermediate and basic form with isoelectric points of about 4. 1, 5.6 and 7.4, respectively. In the special rough microsomal fraction these enzymes were mostly in a basic form with isoelectric points between 7.5 and 9; these were 1-2 units higher than the corresponding basic forms in the lysosomal fraction. Treatment of extracts of the rough microsomal fraction with bacterial neuraminidase raised the isoelectric points of all five hydrolases by 1-2.5 units, indicating the presence of some N-acetylneuraminic acid residues in these basic glycoenzymes. The hydrolases in the Golgi fraction were largely in an acidic form with isoelectric points similar to or lower than those of the corresponding acidic components in the lysosomal fraction. The hydrolases in the smooth microsomal fraction showed isoelectric-focusing patterns intermediate between those in the rough microsomal and the Golgi fractions. These findings support the following scheme for the synthesis, transport and packaging of the lysosomal enzymes. Each hydrolase is synthesized in a restricted portion of the r  相似文献   

9.

Background  

Methods for predicting protein function directly from amino acid sequences are useful tools in the study of uncharacterised protein families and in comparative genomics. Until now, this problem has been approached using machine learning techniques that attempt to predict membership, or otherwise, to predefined functional categories or subcellular locations. A potential drawback of this approach is that the human-designated functional classes may not accurately reflect the underlying biology, and consequently important sequence-to-function relationships may be missed.  相似文献   

10.

Background  

Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast). Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system.  相似文献   

11.
1. Improved resolution of mixtures of alpha(1)-globulins was obtained by the use of isoelectric focusing. 2. Because material recovered after isoelectric focusing in polyacrylamide gels behaved in a manner which suggested interaction with components derived from the gel, isoelectric focusing when used for preparative purposes was done in a matrix of Sephadex G-75. 3. By this means material from the individual bands formed by isoelectric focusing in 6m-urea could be isolated. The stability of these substances was examined by further isoelectric focusing. 4. Analysis of material that had been shown to be homogenous by isoelectric focusing in the absence of urea and of that from several individual bands derived from the same sample by isoelectric focusing in 6m-urea showed different proportions of sialic acid but no change in amino acid composition. 5. In the presence of 6m-urea the isoelectric points found were increased by 0.14-0.25 pH unit. After removal of most of the sialic acid with neuraminidase the increase was 0.36-0.72 pH unit. After treatment with 0.025m-H(2)SO(4) at 80 degrees C for 1h, which removed all the sialic acid, the increase was 0.40-0.87 pH unit. 6. Because removal of all the sialic acid did not decrease the number of bands formed by isoelectric focusing the observed heterogeneity could not be caused entirely by the presence of various proportions of sialic acid.  相似文献   

12.

Background  

Subcellular location prediction of proteins is an important and well-studied problem in bioinformatics. This is a problem of predicting which part in a cell a given protein is transported to, where an amino acid sequence of the protein is given as an input. This problem is becoming more important since information on subcellular location is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing. Since existing predictors are based on various heuristics, it is important to develop a simple method with high prediction accuracies.  相似文献   

13.

Background  

Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes.  相似文献   

14.

Background  

Production or consumption of protons in growth medium during microbial metabolism plays an important role in determining the pH of the environment. Such pH changes resulting from microbial metabolism may influence the geochemical speciation of many elements in subsurface environments. Protons produced or consumed during microbial growth were measured by determining the amount of acid or base added in a 5 L batch bioreactor equipped with pH control for different species including Escherichia coli, Geobacter sulfurreducens, and Geobacter metallireducens.  相似文献   

15.
The mycelial Pi-repressible alkaline phosphatase of the wild-type strain 74A of Neurospora crassa was separated into at least ten isoforms by isoelectric focusing. The components visualized by activity with sodium -naphthyl phosphate as the substrate were predominantly acidic proteins with isoelectric points ranging from pH 4.5 to 7.6. The number of these isoforms was a function of growth pH. Strain pho-2A did not produce active Pi-repressible alkaline phosphatase (the pho-2 gene codes for its amino acid sequence), which gives an indication that these isoforms are encoded by the same structural gene.  相似文献   

16.
A previously described two-dimensional electrophoresis procedure (O'Farrell, 1975) combined isoelectric focusing and sodium dodecylsulfate slab gel electrophoresis to give high resolution of proteins with isoelectric points in the range of pH 4–7. This paper describes an alternate procedure for the first dimension which, unlike isoelectric focusing, resolves basic as well as acidic proteins. This method, referred to as nonequilibrium pH gradient electrophoresis (NEPHGE), involves a short time of electrophoresis toward the cathode and separates most proteins according to their isoelectric points. Ampholines of different pH ranges are used to optimize separation of proteins with different isoelectric points. The method is applied to the resolution of basic proteins with pH 7–10 Ampholines, and to the resolution of total cellular proteins with pH 3.5–10 Ampholines. Histones and ribosomal proteins can be readily resolved even though most have isoelectric points beyond the maximum pH attained in these gels. The separation obtained by NEPHGE with pH 3.5–10 Ampholines was compared to that obtained when isoelectric focusing was used in the first dimension. The protein spot size and resolution are similar (each method resolving more than 1000 proteins), but there is less resolution of acidic proteins in this NEPHGE gel due to compression of the pattern. On the other hand, NEPHGE gels extend the range of analysis to include the 15–30% of the proteins which are excluded from isoelectric focusing gels. The distribution of cell proteins according to isoelectric point and molecular weight for a procaryote (E. coli) was compared to that of a eucaryote (African green monkey kidney); the eucaryotic cell proteins are, on the average, larger and more basic.  相似文献   

17.

Background  

OFFGEL isoelectric focussing (IEF) has become a popular tool in proteomics to fractionate peptides or proteins. As a consequence there is a need for software solutions supporting data mining, interpretation and characterisation of experimental quality.  相似文献   

18.

Background  

There is increasing interest in the development of computational methods to analyze fluorescent microscopy images and enable automated large-scale analysis of the subcellular localization of proteins. Determining the subcellular localization is an integral part of identifying a protein's function, and the application of bioinformatics to this problem provides a valuable tool for the annotation of proteomes. Training and validating algorithms used in image analysis research typically rely on large sets of image data, and would benefit from a large, well-annotated and highly-available database of images and associated metadata.  相似文献   

19.

Background  

Gene Ontology (GO) annotation, which describes the function of genes and gene products across species, has recently been used to predict protein subcellular and subnuclear localization. Existing GO-based prediction methods for protein subcellular localization use the known accession numbers of query proteins to obtain their annotated GO terms. An accurate prediction method for predicting subcellular localization of novel proteins without known accession numbers, using only the input sequence, is worth developing.  相似文献   

20.

Background  

Protein subcellular localization is an important determinant of protein function and hence, reliable methods for prediction of localization are needed. A number of prediction algorithms have been developed based on amino acid compositions or on the N-terminal characteristics (signal peptides) of proteins. However, such approaches lead to a loss of contextual information. Moreover, where information about the physicochemical properties of amino acids has been used, the methods employed to exploit that information are less than optimal and could use the information more effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号