首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A new gene, parD, has been located at 88.5 min on the genetic map of E. coli. Cells carrying an amber mutation in this gene, together with a temperature-sensitive suppressor tRNA, are able to grow, synthesize DNA and divide at both 30 degrees C and 42 degrees C. At 42 degrees C, however, they are defective both in the separation of replicated chromosomes and in the placement of septa. Both the amount of DNA and the number of septa per cell mass are normal in cells growing at 42 degrees C: only the localization of the chromosomes and septa are altered. As a result, cells of random sizes are produced at 42 degrees C and the smallest of these contain no DNA.  相似文献   

2.
Mutants of bacteriophage T4 which exhibit increased sensitivity to ultraviolet radiation specifically at high temperature were isolated after mutagenesis with hydroxylamine. At 42 °C the mutants are twice as sensitive to ultraviolet light as T4D, whereas at 30 °C they exhibit survival curves almost identical to that of the wild-type strain. Complementation tests revealed that the mutants possess temperature-sensitive mutations in the v gene.Evidence is presented to show that T4 endonuclease V produced by the mutants is more thermolabile than the enzyme of the wild-type. (1) Extracts of cells infected with the mutants were capable of excising pyrimidine dimers from ultraviolet irradiated T4 DNA at 30 °C, but no selective release of dimers was induced at 42 °C. (2) Endonuclease V produced by the mutant was inactivated more rapidly than was the enzyme from T4D-infected cells when the purified enzymes were incubated in a buffer at 42 °C. From these results it is evident that the v gene is the structural gene for T4 endonuclease V, which plays an essential role in the excision-repair of ultraviolet light-damaged DNA.The time of action of the repair endonuclease was determined by using the mutant. Survival of a temperature-sensitive v mutant, exposed to ultraviolet light, increased when infected cells were incubated at 30 °C for at least ten minutes and then transferred to 42 °C. It appears that repair of DNA proceeds during an early stage of phage development.  相似文献   

3.
Summary A strain which carries a mutation conferring clorobiocin resistance and temperature sensitivity for growth was isolated from Escherichia coli K12. Genetic mapping and the molecular weight of the gene product suggest that the mutation is in the cou gene, specifying a sub-unit of DNA gyrase. Nuclear organisation and segregation and placement of septa are grossly abnormal in the mutant at 42°C. RNA synthesis and initiation of DNA replication are also affected at the restrictive temperature but the rate of DNA chain elongation continues almost undisturbed.  相似文献   

4.
The Saccharomyces cerevisiae gene RHC21 is a homologue of the fission yeast rad21 +gene, which affects the sensitivity of cells to γ-irradiation and is essential for cell growth in S. pombe. Disruption of the RHC21 gene showed that it is also essential in S. cerevisiae. To examine its function in cell growth further, we have isolated temperature-sensitive mutants for the RHC21 gene and characterized one of them, termed rhc21-sk16. When this mutant was incubated at 36° C, the percentage of large-budded cells was increased. Most of the large-budded cells had aberrant nuclear structures, such as unequally extended nuclear DNA with incompletely elongated spindles across the mother-daughter neck or only in a mother cell. Furthermore, a circular minichromosome is more unstable in the mutant than in the wild-type, even at 25° C. Flow cytometry showed that the bulk of DNA replication takes place normally at the restrictive temperature in the mutant. These results indicated that the RHC21 gene is required for proper segregation of the chromosomes. In addition, we found that the mutant is sensitive not only to UV radiation and γ-rays but also to the antimicrotubule agent nocodazole at 25° C. This suggests that the RHC21 gene is involved in the microtubule function. We discuss how the RHC21 gene product may be involved in chromosome segregation and microtubule function. Received: 10 March 1997 / Accepted: 1 September 1997  相似文献   

5.
Methylated and hydroxymethylated cytosine containing DNA was restricted by proteins encoded by themcrBC (rglB) loci ofE. coli. In vivo, RglB proteins recognize and cleave hmCT2 and hmCT4 DNAs at 30°C and 42°C but hmCT6 DNA was unaffected at both temperatures, However, cells carrying therglB genes cloned on pBR322 (pDSS17) did not restrict hmCT6 at 30°C, but hmCT6 DNA was cleaved efficiently at 42°C. Heat shock treatment for five minutes was enough to induce this promiscuity in recognition specificity. We call this activity RglB star. A single copy ofrglB located on the chromosome or cloned on a low copy vector pMU575 failed to show RglB star activity.De novo protein synthesis was not required for the manifestation of RglB star activity.  相似文献   

6.
A total of sixteen spontaneously generated, independent suppressor mutants was isolated from a mutant (divE42) of Escherichia coli K12 that is defective in cell division. One of the suppressor mutants, designated TR4, had a novel phenotype: it was able to grow at 42° C but not at 32° C. The Kohara genomic library was screened for complementing clones. Clone 148 was able to complement the mutation responsible for the cold-sensitive phenotype, and the gene for trigger factor (tig), which encodes a ribosome-associated peptidyl-prolyl cis/trans isomerase, was identified as the mutated gene by deletion analysis with the insert DNA from clone 148. DNA sequencing revealed that the mutation in the tig gene of the TR4 suppressor mutant was a single nucleotide insertion (+A) at a distance of 834 nucleotides from the initiation codon for this enzyme. When the wild-type tig gene was introduced into the TR4 suppressor mutant, the bacteria were able to grow at 32° C but not at 42° C, an indication that the intergenic suppressor mutation was recessive to the wild-type allele. A model is proposed that accounts for the phenotypes of the divE42 mutant and the TR4 suppressor mutant. Received: 3 March 1998 / Accepted: 14 July 1998  相似文献   

7.
Escherichia coli rodA mutant AOS151 grows as round cells at 30 and 42°C (H. Matsuzawa, K. Hayakawa, T. Sato, and K. Imahori, J. Bacteriol., 115, 436–442 (1973)). The mutant was found to be resistant to mecillinam at both temperatures. lip+ transductants were prepared by Pl phage transduction via strain AOS151, the cotransduction frequency of round morphology (Rod?) at 42°C with the lip gene being about 90%. At 42°C all 54 Rod? transductants tested were resistant to mecillinam. At 30°C all but two of these Rod? (at 42°C)-type transductants were rod-shaped, and all were sensitive to mecillinam; the two strains grew as ovoid cells. The original rodA mutant AOS151 probably involves an additional mutation(s), that expresses the round cell shape at lower temperature, whereas the rodA51 mutation alone seems to result in temperature-sensitive expression of round cell morphology and mecillinam resistance. rodA mutant cells cultured at either 30 or 42°C had wild-type penicillin-binding protein 2, judging from penicillin-binding activity, electrophoretic mobility, and thermosensitivity.  相似文献   

8.
In order to obtain plants that were somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.), we fused protoplasts that had been isolated from 6-month-old suspension cultures of carrot cells with protoplasts isolated from barley mesophyll by electrofusion. After culture for 1 month at 25°C , the cells were cultured for 5 weeks at 4°C , and were then returned to 25°C for culture on a shoot-inducing medium. Three plants (nos. 1, 2 and 3) were regenerated from the cells. The morphology of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells had about 24 chromosomes, fewer than the sum of the numbers of parent chromosomes which was 32. Southern hybridization analysis with fragments of the rgp1 gene used as probe showed that the regenerated plants contained both barley and carrot genomic DNA. Chloroplast (ct) and mitochondrial (mt) DNAs were also analyzed with several probes. The ctDNA of the regenerated plants yielded hybridization bands specific for both barley and carrot when one fragment of rice ctDNA was used as probe. Furthermore, the regenerated plants yielded a barley specific band and a novel band with another fragment of rice ct DNA as a probe. One of the regenerated plants (no. 1) yielded a novel pattern of hybridized bands of mt DNA (with an atp6 probe) that was not detected with either of the parents. These results indicated that the regenerated plants were somatic hybrids of barley and carrot and that recombination of both the chloroplast genomes and the mitochondrial genomes might have occurred. Received: 28 May 1996 / Accepted: 2 August 1996  相似文献   

9.
We evaluated the effect of global warming on Araucaria angustifolia (Bert.) O. Kuntze, a critically endangered native tree of Southern Brazil, by studying the effects of short‐term high temperature treatment on cell viability, respiration and DNA repair of embryogenic cells. Compared with control cells grown at 25°C, cell viability was reduced by 40% after incubation at 30 and 37°C for 24 and 6 h, respectively, while 2 h at 40 and 42°C killed 95% of the cells. Cell respiration was unaffected at 30–37°C, but dramatically reduced after 2 h at 42°C. The in vitro activity of enzymes of the base excision repair (BER) pathway was determined. Apurinic/apyrimidine endonuclease, measured in extracts from cells incubated for 2 h at 42°C, was completely inactivated while lower temperatures had no effect. The activities of three enzymes of the mitochondrial BER pathway were measured after 30‐min preincubation of isolated mitochondria at 25–40°C and one of them, uracil glycosylase, was completely inhibited at 40°C. We conclude that cell viability, respiration and DNA repair have different temperature sensitivities between 25 and 37°C, and that they are all very sensitive to 40 or 42°C. Thus, A. angustifolia will likely be vulnerable to the short‐term high temperature events associated with global warming.  相似文献   

10.
TheDrosophila nuclear proteins Bj6 and Bx42 characterized previously are detected in a series of developmentally active puffs on salivary gland chromosomes. Here the binding of both proteins at puff 3C11-12 containing the glue protein geneSgs-4 is described in more detail. By deletion analysis we show that both proteins bind within a chromosomal segment containing 17–19 kb of DNA surrounding theSgs-4 gene. They are detectable at this site during the intermoult stages, before the puff regresses in response to the moulting hormone ecdysone. If theSgs-4 gene together with flanking DNA sequences is brought into a different chromosomal position by P element transfer, both proteins are detected at this new location. Both proteins are bound to the chromosome within the range of 2.5 kb DNA upstream of theSgs-4 gene. A strain containing a 52 bp deletion within this region fails to bind Bx42 protein suggesting that the missing DNA, which overlaps a hypersensitive region, may be required for the binding of the Bx42 protein.  相似文献   

11.
Summary A newly established cell line was obtained from the culture of embryonic cells of the potato tuber moth Phthorimaea operculella in low temperature conditions (19° C) using modified Grace’s medium supplemented with 10% fetal bovine serum. The population doubling time was about 80 h when cells were cultivated at 19°C and 38 h at 27° C. The cell line had a relatively homogeneous population consisting of various sized spherical cells. The cells were cultivated for more than 25 passages. Their polypeptidic profile was different from profiles of other P. operculella cell lines we previously described and from other lepidopteran cells. The new cell line was designated ORS-Pop-95. The complete replication of the potato tuber moth granulosis virus (PTM GV) was obtained in vitro by both viral infection and DNA transfection. PTM GV multiplied at a significant level during several passages of the cell line that was maintained at 19° C. As long as the cells were maintained at 19° C, virus multiplication could also be obtained at the same rate at 27° C. To compare PTM GV multiplied both in vivo and in vitro, we used morphological identification, serological, DNA probe diagnosis and endonuclease digest profile analysis and confirmed the identity of the virus.  相似文献   

12.
CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) screening has been proved to be an efficient method to study functional genomics from yeast to human. In this study, we report the development of a focused CRISPR/Cas-based gene activation library in Saccharomyces cerevisiae and its application in gene identification based on functional screening towards improved thermotolerance. The gene activation library was subjected to screening at 42°C, and the same library cultured at 30°C was set as a control group. After five successive subcultures, five clones were randomly picked from the libraries cultured at 30 and 42°C, respectively. The five clones selected at 30°C contain the specificity sequences of five different single guide RNAs, whereas all the five clones selected at 42°C contain the specificity sequence of one sgRNA that targets the promoter region of OLE1. A crucial role of OLE1 in thermotolerance was identified: the overexpression of OLE1 increased fatty acid unsaturation, and thereby helped counter lipid peroxidation caused by heat stress, rendering the yeast thermotolerant. This study described the application of CRISPR/Cas-based gene activation screening with an example of thermotolerant yeast screening, demonstrating that this method can be used to identify functional genes in yeast.  相似文献   

13.
We have isolated a mutant in fission yeast, in which mitosis is uncoupled from completion of DNA replication when DNA synthesis is impaired by a thermosensitive mutation in the gene encoding the catalytic subunit of DNA polymerase δ. By functional complementation, we cloned the wild-type gene and identified it as the recently cloned checkpoint gene crb2 + /rhp9 + . This gene has been implicated in the DNA damage checkpoint and acts in the Chk1 pathway. Unlike the deleted strain dcrb2, cells bearing the crb2-1 allele were not affected in the DNA repair checkpoint after UV or MMS treatment at 30° C, but were defective in this checkpoint function when treated with MMS at 37° C. We analysed the involvement of Crb2 in the S/M checkpoint by blocking DNA replication with hydroxyurea, by using S phase cdc mutants, or by overexpression of the mutant PCNA L68S. Both crb2 mutants were unable to maintain the S/M checkpoint at 37° C. Furthermore, the crb2 + gene was required, together with the cds1 + gene, for the S/M checkpoint at 30° C. Finally, both the crb2 deletion and the crb2-1 allele induced a rapid death phenotype in the polδts3 background at both 30° C and 37° C. The rapid death phenotype was independent of the checkpoint functions. Received: 25 May 1998 / Accepted: 21 September 1998  相似文献   

14.
15.
The effect of overexpression of the trehalose-6-phosphate (T6P) synthase gene (TPS1) on ethanol fermentation of Saccharomyces cerevisiae has been studied at 30 and 38°C. The activity of T6P synthase and the accumulation of trehalose during ethanol fermentation were significantly improved by overexpression of TPS1, and especially at 38°C. Ethanol produced by transformants with and without TPS1 gene overexpression at 38°C was approx. 60 and 37 g/l, respectively. The fermentation efficiency of transformants with TPS1 gene overexpression at 38°C was similar to that at 30°C. The critical growth temperature was increased from 36 to 42°C by TPS1 gene overexpression. These results indicated that overexpression of the TPS1 gene had a beneficial effect on the fermentation capacity of the title yeast strain at high temperatures.  相似文献   

16.
Two types of DNA-containing particles are released from lysozyme-produced Escherichia coli spheroplasts after gentle lysis with non-ionic detergents in 1.-0 m-NaCl. Lysis at 25 °C releases the folded chromosomes (1300 S to 2200 S particles). Lysis at 10 °C results in faster sedimenting structures (3000 S to 4000 S). Both types of particles coexist in extracts of cells lysed at intermediate temperatures, i.e. 15 °C.The 3000 S to 4000 S particles are folded chromosomes attached to membrane fragments; they contain membrane proteins and phospholipids in addition to the folded DNA and nascent RNA chains. Incubation of the membrane-attached chromosomes with 1% Sarkosyl releases the folded chromosomes; this Sarkosyl treatment removes the membrane proteins and phospholipids, and halves the sedimentation velocity of the particles, but has no effect on the folded DNA and nascent RNA chains.Membrane-attached chromosomes cannot be isolated from amino acid-starved cells which have completed their rounds of DNA replication; all of the DNA then appears as released folded chromosomes. After resumption of protein synthesis, chromosome attachment to the membrane precedes the initiation of DNA replication. Controls strongly suggest that the changes observed, i.e. the attachment and release from the membrane of the folded chromosome, are related to the act of DNA replication itself.  相似文献   

17.
18.
Temperature-sensitive sporulation mutants were isolated spontaneously from Bacillus subtilis 168 TT by a sequential transfer method. A representative mutant strain, ts32, was characterized in detail. The mutant grew normally at 30°C and 42°C, but did not sporulate at 42°C. Electron microscopic observation and physiological analysis showed that the mutant was blocked at stage 0-1 of sporulation. Genetic analysis suggested that the mutation was located at the spo0B locus on the B. subtilis chromosome. Temperature-shift experiments clearly showed that the spo0B gene product functions only at the beginning of sporulation.  相似文献   

19.
Liu D  Lu Z  Mao Z  Liu S 《Current microbiology》2009,58(2):129-133
A gene encoding the rice (Oryza sativa L.) 90-kDa heat shock protein (OsHsp90) was introduced into Escherichia coli using the pGEX-6p-3 expression vector with a glutathione-S-transferase (GST) tag to analyze the possible function of this protein under heat stress for the first time. We compared the survivability of E. coli (BL21) cells transformed with a recombinant plasmid containing GST-OsHsp90 fusion protein with control E. coli cells transformed with the plasmid containing GST and the wild type BL21 under heat shock after isopropyl β-d-thiogalactopyranoside induction. Cells expressing GST-OsHsp90 demonstrated thermotolerance at 42, 50, and 70°C, treatments that were more harmful to cells expressing GST and the wild type. Further studies were carried out to analyze the heat-induced characteristics of OsHsp90 at 42, 50, and 70°C in vitro. When cell lysates from E. coli transformants were heated at these heat stresses, expressed GST-OsHsp90 prevented the denaturation of bacterial proteins treated with 42°C heat shocks, and partially prevented that of proteins treated at 50 and 70°C; meanwhile, cells expressing GST-OsHsp90 withstood the duration at 50°C. These results indicate that OsHsp90 functioned as a chaperone, binding to a subset of substrates, and maintained E. coli growth well at high temperatures.  相似文献   

20.
A total of sixteen spontaneously generated, independent suppressor mutants was isolated from a mutant (divE42) of Escherichia coli K12 that is defective in cell division. One of the suppressor mutants, designated TR4, had a novel phenotype: it was able to grow at 42°?C but not at 32°?C. The Kohara genomic library was screened for complementing clones. Clone 148 was able to complement the mutation responsible for the cold-sensitive phenotype, and the gene for trigger factor (tig), which encodes a ribosome-associated peptidyl-prolyl cis/trans isomerase, was identified as the mutated gene by deletion analysis with the insert DNA from clone 148. DNA sequencing revealed that the mutation in the tig gene of the TR4 suppressor mutant was a single nucleotide insertion (+A) at a distance of 834 nucleotides from the initiation codon for this enzyme. When the wild-type tig gene was introduced into the TR4 suppressor mutant, the bacteria were able to grow at 32°?C but not at 42°?C, an indication that the intergenic suppressor mutation was recessive to the wild-type allele. A model is proposed that accounts for the phenotypes of the divE42 mutant and the TR4 suppressor mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号